Table des matières

1	Inte	égration sur un segment	2
	1.1	Primitives sur un intervalle I (ouvert, fermé, ou semi-ouvert)	2
	1.2	Intégrale sur un segment d'une fonction continue	2
	1.3	Intégrale fonction de ses bornes	2
2	Ext	sension de la notion d'intégrale	3
3	Cal	cul des intégrales impropres convergentes	5
	3.1	Primitive à vue d'une intégrale impropre	5
	3.2	Intégration par parties	5
		3.2.1 Intégration par parties d'une intégrale d'une fonction continue sur un segment	5
		3.2.2 Intégration par parties d'une intégrale impropre	6
	3.3	Changement de variable	6
		3.3.1 Changement de variable pour une intégrale d'une fonction continue sur un segment	6
		3.3.2 Changement de variable pour une intégrale impropre	7
		3.3.3 Changement de variable et parité dans le cas d'une intégrale impropre	7
	3.4	Que faire face à une intégrale à calculer?	7
4	Inte	égrales de référence	8
5	Propriétés des intégrales impropres convergentes		8
	5.1	Relation de Chasles	8
	5.2	Linéarité	Ö
	5.3	Croissance de l'intégrale	10
6	Le cas des fonctions continues positives (analogue aux séries à termes positifs)		10
	6.1	Caractérisation de la convergence d'une intégrale impropre d'une fonction continue positive	10
		6.1.1 Cas d'une intégrale impropre en $+\infty$	10
		6.1.2 Cas d'une intégrale impropre en $-\infty$	11
	6.2	Critère de comparaison	11
	6.3	Critère de négligeabilité	11
	6.4	Critère d'équivalence	12
	6.5	Critères de convergence d'une intégrale généralisée d'une fonction continue négative	12
7	Critère de convergence d'une intégrale impropre d'une fonction continue de signe quelconque		12
	7.1	Notion de convergence absolue	13
	7.2	Inégalité triangulaire	13
8	Cor	mparaison séries / intégrales	13

1 Intégration sur un segment

1.1 Primitives sur un intervalle I (ouvert, fermé, ou semi-ouvert)

Definition 1. Soit $f: I \to \mathbb{R}$. On appelle primitive de f sur I toute fonction $F: I \to \mathbb{R}$ qui vérifie :

- \bullet F est dérivable sur I.
- \bullet F' = f.

Théoreme 1. Soit $f: I \to \mathbb{R}$. Si f est continue sur l'intervalle I, alors f admet une primitive sur I.

Remarque 1. Attention! Il faut penser à utiliser ce théorème sur un intervalle, jamais sur une réunion d'intervalles.

Théoreme 2. Soit $f: I \to \mathbb{R}$ une fonction continue. Soit F une primitive de f sur I. Soit $G: I \to \mathbb{R}$.

- 1. G est une primitive de f sur I ssi il existe $\lambda \in \mathbb{R}$ tel que : $\forall x \in I, G(x) = F(x) + \lambda$
- 2. Soit $c \in I$. Il existe une unique primitive de f sur I s'annulant en c. C'est la fonction $x \mapsto F(x) F(c)$.

1.2 Intégrale sur un segment d'une fonction continue

Definition 2. Soit $f: I \to \mathbb{R}$ une fonction continue. Soit F une primitive de f sur I et soit $(a, b) \in I^2$ (on ne suppose pas ici a < b). On appelle intégrale de a à b de la fonction f le réel :

$$\int_{a}^{b} f(t) dt = [F(t)]_{a}^{b} = F(b) - F(a)$$

Exemple 1.

$$\int_0^1 x e^{x^2} dx = \frac{1}{2} \int_0^1 2x e^{x^2} dx$$

$$= \frac{1}{2} \left[e^{x^2} \right]_0^1$$

$$= \frac{1}{2} (e - 1)$$
primitive à vue

1.3 Intégrale fonction de ses bornes

Théoreme 3. Soit $f: I \to \mathbb{R}$ une fonction continue. Soit $F: I \to \mathbb{R}$ une primitive de F sur I. Soit $c \in I$. La fonction

$$H: \left\{ \begin{array}{ccc} I & \to & \mathbb{R} \\ x & \mapsto & \int_{c}^{x} f(t) \ dt \end{array} \right.$$

est l'unique primitive de f sur I qui s'annule en c. Ainsi,

- pour tout $x \in I$, H(x) = F(x) F(c).
- la fonction H est de classe C^1 sur I et, pour tout $x \in I$, H'(x) = F'(x) = f(x).

Exercice 1 : (d'après EDHEC 2016) Pour chaque entier n on définit la fonction f_n par :

$$\forall x \in [n, +\infty[, f_n(x)] = \int_n^x e^{\sqrt{t}} dt$$

- 1. Montrer que f_n est de classe \mathcal{C}^1 sur $[n, +\infty[$ puis déterminer $f'_n(x)$ pour tout x de $[n, +\infty[$.
- 2. En déduire le sens de variation de f_n .

Méthode. Soit J un intervalle. Soient u et v deux fonctions de classe C^1 sur J. Soit $f: x \mapsto \int_{u(x)}^{v(x)} h(t) dt$.

Comment montrer que f est de classe C^1 sur J et comment calculer sa dérivée?

On procède par étapes :

- 1. On donne un nom à l'intégrande si l'énoncé ne l'a pas fait. Ici, l'intégrande est notée h.
- 2. On détermine le plus grand intervalle I sur lequel h est *continue*. On note H une primitive de h sur I, qui est de classe \mathcal{C}^1 sur I.
- 3. On vérifie que, pour tout $x \in J$, $u(x) \in I$ et $v(x) \in I$.
- 4. Soit $x \in J$. On a

$$f(x) = [H(t)]_{u(x)}^{v(x)}$$
$$= H(v(x)) - H(u(x))$$

5. Par composition de fonctions de classes \mathcal{C}^1 , f est de classe \mathcal{C}^1 sur J et, pour tout $x \in J$,

$$f'(x) = v'(x)H'(v(x)) - u'(x)H'(u(x))$$

= $v'(x)h(v(x)) - u'(x)h(u(x))$

Exercice 2 : On considère la fonction $g: x \mapsto \int_{-\sqrt{x}}^{x^2} \frac{\ln(1+t^2)}{e^t} dt$. Montrer que g est dérivable sur \mathbb{R}_+^* et calculer sa dérivée.

2 Extension de la notion d'intégrale

Definition 3. Soient a < b deux réels.

- 1. Cas d'une fonction continue $f:[a,+\infty[\to \mathbb{R}]$
 - On dit que l'objet $\int_a^{+\infty} f(t) dt$ est une intégrale impropre en $+\infty$.
 - On dit que l'intégrale impropre $\int_a^{+\infty} f(t) dt$ converge si la fonction :

$$F: \left\{ \begin{array}{ccc} [a, +\infty[& \to & \mathbb{R} \\ & x & \mapsto & \int_a^x f(t) \, \mathrm{d}t \end{array} \right.$$

admet une limite finie lorsque x tend vers $+\infty$.

Si c'est le cas, la valeur de $\int_a^{+\infty} f(t) dt$ est donnée par :

$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

- Dans le cas contraire, on dit que $\int_{a}^{+\infty} f(t) dt$ diverge.
- 2. Cas d'une fonction continue $f:]-\infty, b] \to \mathbb{R}$.
 - On dit que l'objet $\int_{-\infty}^{b} f(t) dt$ est une intégrale impropre en $-\infty$.
 - On dit que l'intégrale impropre $\int_{-\infty}^{b} f(t) dt$ converge si la fonction :

$$F: \left\{ \begin{array}{ccc}]-\infty, b] & \to & \mathbb{R} \\ x & \mapsto & \int_x^b f(t) \, \mathrm{d}t \end{array} \right.$$

admet une limite finie lorsque x tend vers $-\infty$. Si c'est le cas, la valeur de $\int_{-\infty}^{b} f(t) dt$ est donnée par :

$$\int_{-\infty}^{b} f(t) dt = \lim_{x \to -\infty} \int_{x}^{b} f(t) dt$$

- Dans le cas contraire, on dit que $\int_{-\infty}^{b} f(t) dt$ diverge.
- 3. Cas d'une fonction continue $f: \mathbb{R} \to \mathbb{R}$
 - On dit que l'objet $\int_{-\infty}^{+\infty} f(t) dt$ est une intégrale impropre à la fois en $-\infty$ et $+\infty$.
 - On dit que l'intégrale impropre $\int_{-\infty}^{+\infty} f(t) dt$ converge si il existe $c \in \mathbb{R}$ tel que les intégrales impropres $\int_{-\infty}^{c} f(t) dt$ et $\int_{c}^{+\infty} f(t) dt$ soient toutes les deux convergentes.

Si c'est le cas, la valeur de $\int_{-\infty}^{+\infty} f(t) dt$ est donnée par :

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{c} f(t) dt + \int_{c}^{+\infty} f(t) dt$$

• Dans le cas contraire, *i.e.* si, pour tout $c \in \mathbb{R}$, l'une des intégrales impropres $\int_{-\infty}^{c} f(t) dt$ ou $\int_{c}^{+\infty} f(t) dt$ diverge, on dit que l'intégrale impropre $\int_{-\infty}^{+\infty} f(t) dt$ diverge.

Remarque 2. Etudier la nature d'une intégrale impropre, c'est dire si elle converge ou si elle diverge.

Remarque 3. Si, dans un énoncé, on demande de montrer que l'intégrale $\int_a^{+\infty} f(t) dt \int_{-\infty}^b f(t) dt$ existe, il faut démontrer qu'elle converge. Dire que f est continue sur $[a, +\infty[$ ou $]-\infty, b]$ n'est pas suffisant!

Proposition 4. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue. Alors,

L'intégrale impropre
$$\int_{-\infty}^{+\infty} f(t) dt$$
 converge $\iff \exists c \in \mathbb{R}, \int_{-\infty}^{c} f(t) dt$ et $\int_{c}^{+\infty} f(t) dt$ sont toutes deux convergentes. $\iff \forall c \in \mathbb{R}, \int_{-\infty}^{c} f(t) dt$ et $\int_{c}^{+\infty} f(t) dt$ sont toutes deux convergentes.

Par contraposée,

L'intégrale impropre
$$\int_{-\infty}^{+\infty} f(t) dt$$
 diverge $\iff \exists c \in \mathbb{R}, \int_{-\infty}^{c} f(t) dt$ diverge ou $\int_{c}^{+\infty} f(t) dt$ diverge. $\iff \forall c \in \mathbb{R}, \int_{-\infty}^{c} f(t) dt$ diverge ou $\int_{c}^{+\infty} f(t) dt$ diverge.

Remarque 4. En pratique, pour $f: \mathbb{R} \to \mathbb{R}$ une fonction continue, on étudie les intégrales $\int_{-\infty}^{0} f(t) dt$ et $\int_{0}^{+\infty} f(t) dt$. On a le choix du nombre c, il faut choisir le nombre le plus simple!

Méthode. Etude de l'objet $\int_a^{+\infty} f(t) dt$ où f est continue sur $[a, +\infty[$ avec $a \in \mathbb{R}$.

- 1. On rappelle que f est continue sur $[a, +\infty[$ donc $\int_a^{+\infty} f(t) dt$ est une intégrale impropre en $+\infty$.
- 2. On prend $B \in [a, +\infty[$ et on étudie si $\int_a^B f(t) dt$ (intégrale sur le segment [a, B] d'une fonction continue sur [a, B], ce n'est pas une intégrale impropre) admet une limite finie lorsque $B \to +\infty$.
- 3. Si c'est le cas, on conclut que $\int_a^{+\infty} f(t) dt$ est convergente. Dans le cas contraire, cette intégrale impropre est divergente.

Exercice 3 : Etudier la nature des intégrales suivantes.

1.
$$\int_{1}^{+\infty} t \, dt.$$

$$2. \int_{0}^{+\infty} 1 \, dt.$$

$$3. \int_{1}^{+\infty} \frac{1}{t} \, \mathrm{d}t.$$

4.
$$\int_{1}^{+\infty} \frac{1}{t\sqrt{t}} dt.$$

5.
$$\int_{1}^{+\infty} \frac{1}{t^2} dt.$$

6.
$$\int_0^{+\infty} e^{-t} dt.$$

Exercice 4 : (Hors-programme) Etudier la nature des intégrales suivantes.

1.
$$\int_0^2 \frac{1}{t-2} dt$$
.

2.
$$\int_0^1 \ln(t) dt.$$

Méthode. Etude de l'objet $\int_{-\infty}^{+\infty} f(t) dt$ où f est continue sur \mathbb{R} .

- 1. On rappelle que f est continue sur \mathbb{R} donc $\int_{-\infty}^{+\infty} f(t) dt$ est une intégrale impropre à la fois en $-\infty$ et en $+\infty$.
- 2. On choisit un nombre $c \in \mathbb{R}$ le plus simple possible (0 a priori).
- 3. On étudie séparément les intégrales impropres $\int_{-\infty}^{c} f(t) dt$ et $\int_{c}^{+\infty} f(t) dt$ en utilisant la méthode précédente.
- 4. Si ces deux intégrales convergent, alors on conclut que $\int_{-\infty}^{+\infty} f(t) dt$ est convergente. Dans le cas contraire, cette intégrale impropre est divergente.

Exercice 5 : Etudier la nature des intégrales suivantes.

1.
$$\int_{-\infty}^{+\infty} e^{-t} dt$$

$$2. \int_{-\infty}^{+\infty} e^{-|t|} dt$$

3 Calcul des intégrales impropres convergentes

Afin de calculer la valeur d'intégrales impropres convergentes, la règle générale est de se ramener au calcul d'une intégrale sur un segment.

3.1 Primitive à vue d'une intégrale impropre

Exercice 6: Calculer $\int_0^{+\infty} \frac{e^t}{(1+e^t)^2} dt$.

3.2 Intégration par parties

3.2.1 Intégration par parties d'une intégrale d'une fonction continue sur un segment

Théoreme 5. Soient $u, v : I \to \mathbb{R}$ deux fonctions de classe C^1 sur un intervalle I. Soit $(a, b) \in I^2$. Alors

$$\int_a^b u'(t)v(t) dt = \left[u(t)v(t) \right]_a^b - \int_a^b u(t)v'(t) dt$$

i.e.

$$\int_a^b u(t)v'(t) dt = \left[u(t)v(t) \right]_a^b - \int_a^b u'(t)v(t) dt$$

Exercice 7: (Calcul de la primitive de ln s'annulant en 1) Soit x > 0. Calculer $\int_1^x \ln(t) dt$.

Remarque 5. Il est souvent une bonne idée de dériver ln, pour tomber sur une fraction rationnelle, plus facile à intégrer.

Exercice 8: Calculer

1.
$$\int_{1}^{2} \ln(t) dt = \left[t \ln(t) \right]_{1}^{2} - \int_{1}^{2} 1 dt = 2 \ln(2) - 1$$
2.
$$\int_{1}^{2} t^{2} \ln(t) dt = \frac{1}{3} \left[t^{3} \ln(t) \right]_{1}^{2} - \frac{1}{3} \int_{1}^{2} t^{2} dt = \dots$$

3.
$$\int_{1}^{2} t^{k} \ln(t) dt = \frac{1}{k+1} \left[t^{k+1} \ln(t) \right]_{1}^{2} - \frac{1}{k+1} \int_{1}^{2} t^{k} dt = \dots$$

4.
$$\int_{1}^{2} (\ln(t))^{2} dt = \left[t(\ln(t))^{2} \right]_{1}^{2} - 2 \int_{1}^{2} \ln(t) dt = \dots$$

5.
$$\int_{1}^{2} \frac{t \ln(t)}{(t^{2}+1)^{2}} dt = -\frac{1}{2} \left[(t^{2}+1)^{-1} \ln(t) \right]_{1}^{2} + \frac{1}{2} \int_{1}^{2} \frac{1}{t(1+t^{2})} dt$$

Or
$$\frac{1}{t(1+t^{2})} = \frac{1}{t} - \frac{t}{1+t^{2}} \text{ done } \dots$$

6.
$$\int_0^1 t^3 e^{t^2} dt = \frac{1}{2} \left[t^2 e^{t^2} \right]_0^1 - \int_0^1 t e^{t^2} dt = \dots$$

3.2.2 Intégration par parties d'une intégrale impropre

Exercice 9 : Calculer $\int_{1}^{+\infty} \frac{e^{\frac{1}{t}}}{t^3} dt$.

Exercice 10 : Soit $\alpha > 0$. Calculer les intégrales suivantes.

1.
$$\int_{0}^{+\infty} \alpha e^{-\alpha t} dt$$

2.
$$\int_{0}^{+\infty} \alpha t e^{-\alpha t} dt$$

3.
$$\int_0^{+\infty} \alpha t^2 e^{-\alpha t} dt$$

3.3 Changement de variable

3.3.1 Changement de variable pour une intégrale d'une fonction continue sur un segment

Théoreme 6. Soit $f: I \to \mathbb{R}$ continue sur un intervalle I. Soit φ une fonction de classe \mathcal{C}^1 sur $J = [\alpha, \beta]$ tq $\varphi([\alpha, \beta]) \subseteq I$, où $\alpha < \beta$ sont deux réels. Alors

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$$

Definition 4. Un changement de variable affine est de la forme $t = \varphi(u) = au + b$ où $a \neq 0$ et $b \in \mathbb{R}$.

Exemple 2. Les plus courants sont t = -u et plus généralement t = au.

Exercice 11:

- 1. Calcul de $\int_1^2 \frac{dt}{e^t + 1}$ à l'aide du changement de variable $u = e^t$.
- 2. Calcul de $\int_1^2 \frac{dt}{t+2\sqrt{t}}$ à l'aide du changement de variable $u = \sqrt{t}$
- 3. Calcul de $\int_0^1 \frac{1}{\sqrt{1+e^t}} dt$ en posant $u = \sqrt{1+e^t}$

Exercice 12 : On pose $I = \int_0^3 \frac{t}{\sqrt{2t+3}} dt$. Montrer que $I = \frac{1}{4} \int_3^9 \frac{u-3}{\sqrt{u}} du$ et en déduire la valeur de I.

3.3.2 Changement de variable pour une intégrale impropre

Exercice 13 : Calculer $\int_0^{+\infty} \frac{dt}{e^t + 1}$ à l'aide du changement de variable $u = e^t$.

Exercice 14 : Montrer que $\int_0^{+\infty} \alpha e^{-\alpha t} dt = \int_0^{+\infty} e^{-t} dt$ à l'aide d'un changement de variable.

Remarque 6. Dans cet exemple, nous avons fait un changement de variable affine. C'est le seul type de changement de variables que l'on a le droit de faire directement dans une intégrale impropre. Pour les autres changements de variables, il faut se ramener à un calcul sur un segment.

3.3.3 Changement de variable et parité dans le cas d'une intégrale impropre

Théoreme 7. Soit $a \in \mathbb{R}_+$ (resp. soit $a = +\infty$) et soit $f : [-a, a] \to \mathbb{R}$ (resp. soit $f : \mathbb{R} \to \mathbb{R}$) continue sur [-a, a] (resp. sur \mathbb{R}).

1. Si f est paire:

•
$$\int_{-a}^{a} f(t) dt$$
 converge \iff $\int_{0}^{a} f(t) dt$ converge.

• Si c'est le cas :
$$\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(u) du$$

2. Si f est impaire:

•
$$\int_{-a}^{a} f(t) dt$$
 converge \iff $\int_{0}^{a} f(t) dt$ converge.

• Si c'est le cas :
$$\int_{-a}^{a} f(t) dt = 0$$

Exercice 15 : Calculer
$$\int_{-2}^{2} t^4 dt$$
.

Exercice 16 : Etudier la nature de l'intégrale $\int_{-\infty}^{+\infty} t dt$.

3.4 Que faire face à une intégrale à calculer?

Le programme officiel stipule que tout changement de variable non affine doit être indiqué aux candidat·es. Ainsi, il y a plusieurs cas à avoir en tête :

- Si l'énoncé demande de calculer l'intégrale en précisant le changement de variable à effectuer, on suit l'indication de l'énoncé.
- Si l'énoncé demande de calculer l'intégrale à l'aide d'un changement de variable mais ne donne pas le changement de variable, il s'agit forcément d'un changement de variable affine.
- Si l'énoncé demande de calculer l'intégrale sans donner la méthode, on teste les techniques dans cet ordre :
 - 1. On essaye de trouver une primitive à vue.
 - 2. On regarde si l'intégrande est un produit et si une IPP peut simplifier l'intégrande (par exemple : dérivation de \ln)
 - 3. On regarde si il y a une symétrie dans la formule et si un changement de variable affine permet d'exploiter cette symétrie (par exemple t = -u).
- Si l'énoncé donne directement la formule à démontrer, cela nous aide :
 - × Si il y a une somme, cela fait penser à une IPP.
 - × On peut essayer de reconnaître un changement de variable par « identification ».

4 Intégrales de référence

Théoreme 8 (Critère de Riemann au voisinage de $+\infty$). Soit $\alpha \in \mathbb{R}$.

L'intégrale impropre $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge ssi $\alpha > 1$.

Remarque 7. Moralement, $\alpha > 1$ est la condition pour que la fonction $t \mapsto \frac{1}{t^{\alpha}}$ tende suffisamment vite vers 0 pour que l'intégrale puisse converger.

Théoreme 9. Soit $\alpha \in \mathbb{R}$.

L'intégrale impropre $\int_0^{+\infty} e^{-\alpha t} dt$ converge ssi $\alpha > 0$.

Théoreme 10 (Hors programme : critère de Riemann au voisinage de 0). Soit $\alpha \in \mathbb{R}$.

L'intégrale impropre $\int_0^1 \frac{1}{t^{\alpha}} dt$ converge ssi $\alpha < 1$.

Exercice 17 : Etudier la nature des intégrales suivantes.

1.
$$\int_{1}^{+\infty} \frac{1}{t^2} dt$$

$$2. \int_{1}^{+\infty} \frac{1}{\sqrt{t}} \, \mathrm{d}t$$

3.
$$\int_0^{+\infty} \frac{1}{(2t+1)^3} dt?$$

5 Propriétés des intégrales impropres convergentes

Dans cette partie, on donnera les propriétés pour les intégrales impropres de la forme $\int_{a}^{+\infty} f(t) dt$. Des propriétés analogues sont valables pour les intégrales de la forme $\int_{-\infty}^{b} f(t) dt$ ou $\int_{-\infty}^{+\infty} f(t) dt$.

5.1 Relation de Chasles

Théoreme 11. Soit $f: [a, +\infty[\to \mathbb{R} \text{ continue. Supposons que l'intégrale impropre } \int_a^{+\infty} f(t) dt \text{ converge. Soit } c \in [a, +\infty[. Alors]]$

•
$$\int_{c}^{+\infty} f(t) dt$$
 converge.

• De plus, on
$$a: \int_a^{+\infty} f(t) dt = \int_a^c f(t) dt + \int_c^{+\infty} f(t) dt$$

La relation de Chasles permet de calculer l'intégrale d'une fonction f définie par morceaux (à l'aide de plusieurs formules).

$$Exemple \ 3. \ \text{Soit} \ f: x \mapsto \begin{cases} 1+x & \text{si} \ -1 \leq x < 0 \\ 1 & \text{si} \ 0 \leq x < 1 \\ 2-x & \text{si} \ 1 \leq x < 2 \\ 0 & \text{sinon} \end{cases} . \ \text{La fonction} \ f \ \text{est continue sur} \ \mathbb{R}.$$

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-1}^{1} f(t) dt$$
 car f est nulle en dehors de $[-1, 1]$

$$= \int_{-1}^{0} f(t) dt + \int_{0}^{1} f(t) dt + \int_{1}^{2} f(t) dt$$
 par relation de Chasles
$$= \int_{-1}^{0} (1+t) dt + \int_{0}^{1} 1 dt + \int_{1}^{2} (2-t) dt$$

$$= \frac{1}{2} + 1 + \frac{1}{2}$$

$$= 2$$

5.2 Linéarité

Théoreme 12. Soient $f, g: [a, +\infty[\to \mathbb{R} \text{ deux fonctions continues. Supposons que les intégrales impropres } \int_a^{+\infty} f(t) dt$ et $\int_a^{+\infty} g(t) dt$ convergent. Alors, pour tout $(\lambda, \mu) \in \mathbb{R}^2$,

• L'intégrale $\int_{a}^{+\infty} (\lambda f + \mu g)(t) dt$ converge.

• De plus:
$$\int_{a}^{+\infty} (\lambda f + \mu g)(t) dt = \lambda \int_{a}^{+\infty} f(t) dt + \mu \int_{a}^{+\infty} g(t) dt$$

Remarque 8. Attention, ce n'est pas parce que l'intégrale $\int_a^{+\infty} f(t) + g(t) dt$ converge que les intégrales $\int_a^{+\infty} f(t) dt$ et $\int_a^{+\infty} g(t) dt$ convergent nécessairement.

Exemple 4. Considérons l'intégrale $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x+1)}$. On peut écrire que $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x+1)} = \int_{1}^{+\infty} \left(\frac{1}{x} - \frac{1}{x+1}\right) \, \mathrm{d}x$

mais on ne peut pas écrire que

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x+1)} = \int_{1}^{+\infty} \frac{1}{x} \, \mathrm{d}x - \int_{1}^{+\infty} \frac{1}{x+1} \, \mathrm{d}x$$

En effet, les deux intégrales de droite divergent (par critère de Riemann au voisinage de $+\infty$). Pourtant, l'intégrale $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x+1)}$ converge.

 $D\acute{e}monstration$. Soit $B \ge 1$.

$$\int_{1}^{B} \frac{dx}{x(x+1)} = \int_{1}^{B} \left(\frac{1}{x} - \frac{1}{x+1}\right) dx$$

$$= \int_{1}^{B} \frac{1}{x} dx - \int_{1}^{B} \frac{1}{x+1} dx$$

$$= \left[\ln(x)\right]_{1}^{B} - \left[\ln(x+1)\right]_{1}^{B}$$

$$= \ln(B) - (\ln(B+1) - \ln(2))$$

$$= \ln(2) + \ln\left(\frac{B}{B+1}\right)$$

Or, $\lim_{B \to +\infty} \frac{B}{B+1} = 1$ donc $\lim_{B \to +\infty} \ln \left(\frac{B}{B+1} \right) = 0$. D'où $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x+1)}$ converge et

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x+1)} = \lim_{B \to +\infty} \int_{1}^{B} \frac{\mathrm{d}x}{x(x+1)} = \ln(2)$$

5.3 Croissance de l'intégrale

Théoreme 13 (Positivité de l'intégrale). Soit $f:[a, +\infty[\to \mathbb{R} \ continue. \ Supposons que l'intégrale impropre <math>\int_a^{+\infty} f(t) dt$ converge et supposons que, pour tout $t \in [a, +\infty[, f(t) \ge 0.$

- Les bornes d'intégration étant dans l'ordre croissant, on a $\int_a^{+\infty} f(t) dt \ge 0$
- Si, pour tout $t \in [a, +\infty[, f(t) > 0, alors \int_{a}^{+\infty} f(t) dt > 0]$
- $Si \int_{a}^{+\infty} f(t) dt = 0$, alors, pour tout $t \in [a, +\infty[, f(t) = 0]]$

Théoreme 14 (Croissance de l'intégrale). Soient $f,g:[a,+\infty[\to\mathbb{R}\ deux\ fonctions\ continues. Supposons que les intégrales <math>\int_a^{+\infty} f(t) \,dt \,et \int_a^{+\infty} g(t) \,dt \,convergent.$ Supposons aussi que, pour tout $t\in[a,+\infty[,f(t)\leq g(t).$ Alors, les bornes d'intégration étant dans l'ordre croissant :

$$\int_{a}^{+\infty} f(t) dt \leq \int_{a}^{+\infty} g(t) dt$$

Exemple 5. Soit $f(t) = \ln(t)e^t$. La fonction f est continue sur $]0, +\infty[$. On cherche à encadrer $\int_1^2 f(t) dt$. Soit $t \in [1, 2]$. On a

$$0 = 0 \times e \le \ln(t)e^t \le \ln(2)e^2$$

Par croissance de l'intégrale, les bornes étant dans l'ordre croissant $(1 \le 2)$, on obtient

$$0 = \int_{1}^{2} 0 \, dt \le \int_{1}^{2} f(t) \, dt \le \int_{1}^{2} \ln(2)e^{2} \, dt = (2-1)\ln(2)e^{2} = \ln(2)e^{2}$$

Méthode. Pour comparer des intégrales,

- 1. on commence TOUJOURS par comparer les intégrandes (on écrit tout d'abord une inégalité valable « pour tout $t \gg$),
- 2. on conclut par la croissance de l'intégrale, les bornes étant dans l'ordre croissant.

Si l'on travaille sur des intégrales impropres, il faut avoir démontré au préalable la convergence des intégrales.

Exercice 18 : Soit $n \in \mathbb{N}$. On pose $I_n = \int_0^1 x^n e^{-x} dx$.

- 1. Montrer que pour tout n, on a : $0 \le I_n \le \frac{1}{n+1}$.
- 2. En déduire la limite de (I_n) .

Remarque 9. De nombreux exercices mélangent intégrales et suites. Il faut donc faire très attention à ne pas confondre I_n et (I_n) , en particulier, les deux phrases

- \bullet Montrer que I_n converge
- Montrer que (I_n) converge

n'ont pas le même sens (convergence au sens des intégrales impropres puis convergence au sens des suites).

6 Le cas des fonctions continues positives (analogue aux séries à termes positifs)

6.1 Caractérisation de la convergence d'une intégrale impropre d'une fonction continue positive

6.1.1 Cas d'une intégrale impropre en $+\infty$

Théoreme 15. Soit $f:[a, +\infty[\to \mathbb{R} \text{ une fonction continue. Supposons que, pour tout } x \in [a, +\infty[, f(x) \ge 0. \text{ Notons } F: x \mapsto \int_a^x f(t) dt. \text{ Alors}$

• La fonction F est croissante sur $[a, +\infty[$.

$$\int_{a}^{+\infty} f(t) dt converge \iff F \text{ admet une limite finie en } +\infty$$
$$\iff F \text{ est major\'ee sur } [a, +\infty[$$

• Si F est non majorée, alors $\lim_{x\to+\infty} F(x) = +\infty$.

6.1.2 Cas d'une intégrale impropre en $-\infty$

Théoreme 16. Soit $f:]-\infty,b] \to \mathbb{R}$ une fonction continue. Supposons que, pour tout $x \in]-\infty,b]$, $f(x) \ge 0$. Notons $G: x \mapsto \int_{x}^{b} f(t) dt$. Alors

• G est décroissante sur $]-\infty,b]$.

$$\int_{-\infty}^{b} f(t) dt \ converge \iff G \ admet \ une \ limite \ finie \ en \ -\infty$$
$$\iff G \ est \ major\'ee \ sur \] - \infty, b]$$

Si G est non majorée, alors $\lim_{x\to -\infty} G(x) = +\infty$.

Dans les parties suivantes, on donnera les propriétés pour les intégrales impropres de la forme $\int_{a}^{+\infty} f(t) dt$. Des propriétés analogues sont valables pour les intégrales de la forme $\int_{-\infty}^{b} f(t) dt$ ou $\int_{-\infty}^{+\infty} f(t) dt$.

6.2Critère de comparaison

Théoreme 17. Soient $f,g:[a,+\infty[\to\mathbb{R}\ deux\ fonctions\ continues.\ Supposons\ de\ plus\ que,\ pour\ tout\ x\in[a,+\infty[,$ $0 \le f(x) \le g(x).$

- - $Si \int_{a}^{+\infty} g(t) dt$ converge, alors $\int_{a}^{+\infty} f(t) dt$ converge.
 - $Si \int_{a}^{+\infty} f(t) dt \ diverge, \ alors \int_{a}^{+\infty} g(t) dt \ diverge.$
- 2. De plus, dans le cas de la convergence, on a

$$0 \le \int_{a}^{+\infty} f(t) \, dt \le \int_{a}^{+\infty} g(t) \, dt$$

Exercice 19 : Donner la nature des intégrales impropres suivantes.

$$1. \int_{1}^{+\infty} \frac{e^{-t}}{t^2} dt$$

2.
$$\int_{e}^{+\infty} \frac{\ln(t)}{\sqrt{t}} dt$$

2.
$$\int_{e}^{+\infty} \frac{\ln(t)}{\sqrt{t}} dt$$
 3.
$$\int_{1}^{+\infty} \frac{dt}{e^{t} + \ln(t)}$$

Critère de négligeabilité

Théoreme 18. Soient $f,g:[a,+\infty[\to\mathbb{R}\ deux\ fonctions\ continues\ et\ positives.$ On suppose que $:f(t)=\underset{t\to+\infty}{o}(g(t))$.

•
$$Si \int_{a}^{+\infty} g(t) dt$$
 converge, alors $\int_{a}^{+\infty} f(t) dt$ converge.

•
$$Si \int_{a}^{+\infty} f(t) dt diverge, alors \int_{a}^{+\infty} g(t) dt diverge.$$

Exercice 20 : Étude de la nature de $\int_0^{+\infty} e^{-t^2} dt$.

- 1. La fonction $f: t \mapsto e^{-t^2}$ est continue sur $[0, +\infty[$. Elle est de plus positive sur $[0, +\infty[$.
- 2. $e^{-t^2} = o(e^{-t})$
 - Or $\int_{0}^{+\infty} e^{-t} dt$ est convergente.

Ainsi, par le théorème de négligeabilité des intégrales généralisées de fonctions continues positives, l'intégrale $\int_{0}^{+\infty} e^{-t^{2}} dt \text{ est convergente.}$

Étude de la nature de $\int_{0}^{+\infty} \frac{1}{\ln(t)} dt$.

- 1. La fonction $f: t \mapsto \frac{1}{\ln(t)}$ est continue sur $[2, +\infty[$. Elle est de plus positive sur $[2, +\infty[$.
- 2. $\frac{1}{t} = o_{t \to +\infty} \left(\frac{1}{\ln(t)} \right)$. (comprendre que $\frac{1}{\ln(t)}$ est grand devant $\frac{1}{t}$)
 - Or $\int_{0}^{+\infty} \frac{1}{t} dt$ est divergente.

Ainsi, par le théorème de négligeabilité des intégrales généralisées de fonctions continues positives, l'intégrale $\int_{2}^{+\infty} \frac{1}{\ln(t)} dt \text{ est divergente.}$

Critère d'équivalence

Théoreme 19. Soient $f,g:[a,+\infty[\to\mathbb{R}\ deux\ fonctions\ continues\ et\ positives.$ On suppose que : $f(t)\underset{t\to+\infty}{\sim} g(t)$.

Alors
$$\int_{a}^{+\infty} f(t) dt$$
 et $\int_{a}^{+\infty} g(t) dt$ sont de même nature.

Exercice 21 : Donner la nature des intégrales impropres suivantes.

1.
$$\int_{1}^{+\infty} \frac{e^{-t}}{t^2} dt$$

2.
$$\int_{0}^{+\infty} \frac{\ln(t)}{\sqrt{t}} dt$$

1.
$$\int_{1}^{+\infty} \frac{e^{-t}}{t^2} dt$$
 2.
$$\int_{e}^{+\infty} \frac{\ln(t)}{\sqrt{t}} dt$$
 3.
$$\int_{1}^{+\infty} \frac{dt}{e^t + \ln(t)}$$

Critères de convergence d'une intégrale généralisée d'une fonction continue néga-6.5tive

Dans le cas où la fonction f considérée est continue et négative sur $[a, +\infty[$, on se ramène au cas d'une fonction positive en considérant la fonction -f qui est positive sur cet intervalle.

Critère de convergence d'une intégrale impropre d'une fonction conti-7 nue de signe quelconque

Dans cette partie, on donnera les propriétés pour les intégrales impropres de la forme $\int_{-\infty}^{+\infty} f(t) dt$. Des propriétés analogues sont valables pour les intégrales de la forme $\int_{-\infty}^{b} f(t) dt$ ou $\int_{-\infty}^{+\infty} f(t) dt$.

7.1 Notion de convergence absolue

Definition 5. Soit $f:[a, +\infty[\to \mathbb{R} \text{ continue. On dit que l'intégrale impropre } \int_a^{+\infty} f(t) dt$ est absolument convergente si l'intégrale impropre $\int_a^{+\infty} |f(t)| dt$ converge.

Théoreme 20. Soit $f:[a,+\infty[\to\mathbb{R} \text{ continue. } Si\int_a^b f(t) dt \text{ est absolument convergente, alors } \int_a^b f(t) dt \text{ est convergente.}$

7.2 Inégalité triangulaire

Théoreme 21 (Inégalité triangulaire pour une intégrale sur un segment). Soient a et b deux réels vérifiant $a \le b$. Soit $f:[a,b] \to \mathbb{R}$ continue. Alors

$$\left| \int_{a}^{b} f(t) \, dt \right| \leq \int_{a}^{b} |f(t)| \, dt$$

Si les bornes ne sont pas rangées dans l'ordre croissant, il est toujours vrai d'écrire :

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \leq \left| \int_{a}^{b} |f(t)| \, \mathrm{d}t \right|$$

Théoreme 22 (Inégalité triangulaire pour une intégrale impropre). Soit $f:[a, +\infty[\to \mathbb{R} \ continue. \ Si \int_a^{+\infty} f(t) \ dt$ est absolument convergente, alors $\int_a^{+\infty} f(t) \ dt$ est convergente et

$$\left| \int_{a}^{+\infty} f(t) \, \mathrm{d}t \right| \le \int_{a}^{+\infty} |f(t)| \, \mathrm{d}t$$

8 Comparaison séries / intégrales

Exercice 22: (d'après EDHEC 2003)

On note f la fonction définie, pour tout x > 0, par : $f(x) = \frac{e^{\frac{1}{x}}}{r^2}$.

- 1. (a) Pour tout $n \ge 1$, on pose $I_n = \int_n^{+\infty} f(x) dx$. Montrer que l'intégrale I_n est convergente et exprimer I_n en fonction de n.
 - (b) En déduire que $I_n \sim \frac{1}{n}$.
- 2. Montrer que la série de terme général $u_n = f(n)$ est convergente.
- 3. (a) Établir que pour tout $k \in \mathbb{N}^*$, $f(k+1) \le \int_k^{k+1} f(x) dx \le f(k)$.
 - (b) En sommant soigneusement cette dernière inégalité, montrer que :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=n+1}^{+\infty} u_k \le I_n \le \sum_{k=n+1}^{+\infty} u_k + \frac{e^{\frac{1}{n}}}{n^2}$$

(c) Déduire des questions précédentes un équivalent simple, lorsque n est au voisinage de $+\infty$, de $\sum_{k=n+1}^{+\infty} \frac{e^{\frac{1}{k}}}{k^2}$.