Table des matières

1	Graphe probabiliste Chaînes de Markov		1 2
2			
	2.1	Définitions	2
	2.2	Méthode : calcul du $n^{\rm e}$ état probabiliste	4
	2.3	Etats stables d'une chaîne de Markov homogène	4

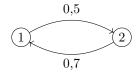
1 Graphe probabiliste

Definition 1. Un graphe probabiliste est la donnée d'un graphe orienté et pondéré $G = (S, A, \nu)$ tel que :

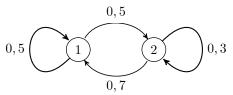
$$\forall x \in S, \sum_{y \in V(x)} \nu((x,y)) \leq 1$$

(La somme des poids des arcs partant d'un sommet est inférieure ou égale à 1)

Exemple 1. Exemple d'un graphe probabiliste.



En pratique, on représente les flèches implicites pour que la somme des poids des arcs partant d'un sommet soit égale à 1.

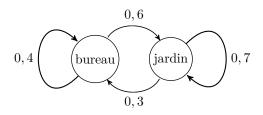


On interprète ce graphe probabiliste de la manière suivante : à chaque instant

- si on est sur le sommet 1, on a une probabilité égale à
 - \times 0,5 de se déplacer sur le sommet 2
 - \times 0, 5 de rester sur le sommet 1
- si on est sur le sommet 2, on a une probabilité égale à
 - \times 0,7 de se déplacer sur le sommet 1
 - \times 0, 3 de rester sur le sommet 2

Remarque 1. Les graphes probabilistes servent à représenter des systèmes aléatoires à r états possibles et évoluant en temps discret : à chaque instant, le système est dans un seul état, et il a une certaine probabilité de passer de cet état à un autre.

Exercice 1 : On considère une personne qui aime travailler à son bureau et dans son jardin. Si cette personne travaille à son bureau, la probabilité qu'elle aille travailler dans son jardin l'heure suivante est égale à 0,6. Si au contraire elle travaille dans son jardin, la probabilité qu'elle aille travailler à son bureau l'heure suivante est égale à 0,3. Représenter le graphe probabiliste associé à ce système aléatoire.



2 Chaînes de Markov

2.1 Définitions

Definition 2. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a.r. discrètes définies sur un même espace probabilisé et à valeurs dans un même ensemble E. On dit que la suite (X_n) est une *chaîne de Markov* si, pour tout $n \in \mathbb{N}$, pour tout $(i,j) \in E^2$ et pour tout $(i_0,\ldots,i_{n-1}) \in E^n$, on a

$$\mathbb{P}_{[X_n=i] \cap [X_{n-1}=i_{n-1}] \cap \dots \cap [X_0=i_0]}([X_{n+1}=j]) = \mathbb{P}_{[X_n=i]}([X_{n+1}=j])$$

dès lors que tous les termes ont un sens (i.e. dès que $\mathbb{P}([X_n = i] \cap [X_{n-1} = i_{n-1}] \cap \cdots \cap [X_0 = i_0]) \neq 0$).

Remarque 2. Il faut comprendre la condition de la manière suivante : le futur (i.e. X_{n+1}) ne dépend que du présent (i.e. X_n) et pas du passé (i.e. X_{n-1}, \ldots, X_0).

Definition 3. Soit (X_n) une chaîne de Markov. L'ensemble E des valeurs prises par les v.a.r. X_n est appelé ensemble des états de la chaîne.

Remarque 3. En général, si il y a r états, on choisit E = [1, r] (ce qui revient à numéroter les états).

Definition 4. Soit (X_n) une chaîne de Markov. Soit $n \in \mathbb{N}$ et soient $i, j \in E$ deux états.

- On dit que la chaîne est dans l'état i au temps n si l'événement $[X_n=i]$ est réalisé.
- Les probabilités $\mathbb{P}_{[X_n=i]}([X_{n+1}=j])$, souvent notées $p_{i,j}(n)$, sont appelées probabilités de transition ou probabilités transitionnelles.
- La chaîne de Markov est dite homogène si les probabilités $p_{i,j}(n)$ ne dépendent pas de n mais seulement de i et de j. Si c'est le cas, on les note $p_{i,j}$ et on a, pour tout $n \in \mathbb{N}$

$$p_{i,j} = \mathbb{P}_{[X_0=i]}([X_1=j]) = \mathbb{P}_{[X_n=i]}([X_{n+1}=j])$$

Remarque 4. Une chaîne de Markov homogène, c'est une chaîne de Markov dont la loi d'évolution ne change pas avec le temps.

Definition 5. Soit (X_n) une chaîne de Markov homogène à r états notés $1, 2, \ldots, r$.

Soit $n \in \mathbb{N}$, le n^{e} état probabiliste de la chaîne de Markov est la matrice ligne :

$$V_n \stackrel{\text{def}}{=} (\mathbb{P}([X_n = 1]) \quad \mathbb{P}([X_n = 2]) \dots \mathbb{P}([X_n = r])) \in \mathcal{M}_{1,r}(\mathbb{R})$$

En particulier, V_0 est appelé *l'état initial*.

Remarque 5. Le n^{e} état probabiliste caractérise la loi de X_{n} . Il s'agit d'une représentation de cette loi sous la forme d'un vecteur ligne.

Definition 6. Soit (X_n) une chaîne de Markov homogène à r états notés $1, 2, \ldots, r$. On note $p_{i,j}$ les probabilités de transition. On appelle matrice de transition de la chaîne de Markov la matrice

$$M = (p_{i,j})_{\substack{1 \le i \le r \\ 1 \le j \le r}}^{1 \le i \le r} = \begin{pmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,r} \\ p_{2,1} & p_{2,2} & \dots & p_{2,r} \\ \vdots & \vdots & \ddots & \vdots \\ p_{r,1} & p_{r,2} & \dots & p_{r,r} \end{pmatrix} \in \mathcal{M}_r(\mathbb{R})$$

Remarque 6. La donnée de la loi de X_0 et de la matrice de transition caractérise la chaîne de Markov. Autrement dit, si la loi de X_0 et la matrice de transition sont connues, alors les lois des X_k pour $k \in \mathbb{N}^*$ sont entièrement déterminées. Voir partie sur le calcul du n^e état probabiliste.

Proposition 1. Soit M une matrice de transition d'une chaîne de Markov. Alors :

- Les coefficients de la matrice M sont tous positifs ou nuls.
- La somme des coefficients de chaque ligne est égale à 1.

(Pour la culture : une telle matrice est dite stochastique.)

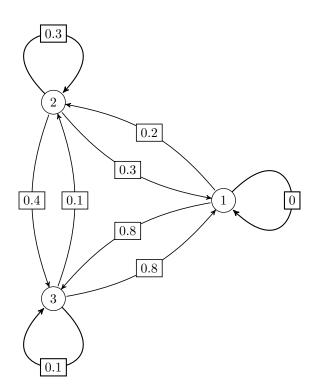
Exercice 2 : On reprend l'exo précédent. On numérote les états : bureau = 1 et jardin = 2. On suppose que la personne travaille initialement au bureau. Pour tout $n \in \mathbb{N}$, on note X_n la v.a.r. égale à l'état dans lequel se situe le système à l'instant n. En particulier, on a $X_0 = 1$.

- 1. Justifier que (X_n) est une chaîne de Markov.
- 2. Déterminer la matrice de transition de cette chaîne de Markov.
- 3. On note, pour tout $n \in \mathbb{N}$, $\alpha_n = \mathbb{P}([X_n = 1])$.
 - (a) Exprimer, pour tout $n \in \mathbb{N}$, $\mathbb{P}([X_n = 2])$ en fonction de α_n .
 - (b) Déterminer une relation de récurrence entre α_{n+1} et α_n .
 - (c) Calculer $\lim_{n\to+\infty} \mathbb{P}([X_n=1])$ et $\lim_{n\to+\infty} \mathbb{P}([X_n=2])$.

Definition 7. Soit (X_n) une chaîne de Markov homogène à r états notés 1, 2, ..., r. On note $M = (p_{i,j})_{\substack{1 \le i \le r \\ 1 \le j \le r}}$ sa matrice de transition. On appelle graphe probabiliste associé à M, le graphe probabiliste à r sommets tel que

- $\bullet\,$ les sommets sont numérotés de 1 à r
- $\bullet\,$ le poids de l'arc orienté qui permet de passer du sommet i au sommet j est $p_{i,j}$

Exercice 3 : Soit $M = \begin{pmatrix} 0 & 0,2 & 0,8 \\ 0,3 & 0,3 & 0,4 \\ 0,8 & 0,1 & 0,1 \end{pmatrix}$ une matrice de transition. Tracer le graphe probabiliste associé à cette matrice.



On vérifie que la somme des poids des arcs partant d'un même sommet est égale à 1, ce qui correspond au fait que la somme des coefficients de chaque ligne de M est égale à 1.

2.2 Méthode : calcul du ne état probabiliste

Théoreme 2 (Hors-programme, à savoir redémontrer). Soit (X_n) une chaîne de Markov homogène à r états notés $1,2,\ldots,r$. On note $M=(p_{i,j})_{\substack{1\leq i\leq r\\1\leq j\leq r}}$ sa matrice de transition. Alors, pour tout $n\in\mathbb{N}$,

$$V_n = V_0 M^n$$

Remarque 7. On retrouve ainsi que si V_0 et M sont connus, alors V_n est entièrement déterminé, *i.e.* la loi de X_n est entièrement déterminée.

 $D\acute{e}monstration$. Soit $n \in \mathbb{N}$. Soit $j \in [1, r]$. D'après la FPT avec le sce $([X_n = i])_{i \in [1, r]}$, on a

$$\mathbb{P}([X_{n+1} = j]) = \sum_{i=1}^{r} \mathbb{P}([X_n = i] \cap [X_{n+1} = j])$$

$$= \sum_{i=1}^{r} \mathbb{P}([X_n = i]) \mathbb{P}_{[X_n = i]}([X_{n+1} = j])$$

$$= \sum_{i=1}^{r} \mathbb{P}([X_n = i]) p_{i,j}$$
si les probabilités conditionnelles existent d'après la matrice de transition ou d'après l'énoncé

Or,

$$[V_{n+1}]_j = \mathbb{P}([X_{n+1} = j])$$

 $[V_n M]_j = \sum_{i=1}^r \mathbb{P}([X_n = i])p_{i,j}$

D'où, pour tout $j \in [1, r], [V_{n+1}]_j = [V_n M]_j$, et donc

$$V_{n+1} = V_n M$$

Montrons par récurrence : $\forall n \in \mathbb{N}, P(n)$

où P(n) : « $V_n = V_0 M^n$ »

Initialisation : $V_0 M^0 = V_0 I_r = V_0$.

Hérédité : soit $n \in \mathbb{N}$. Supposons P(n) et montrons P(n+1).

$$V_{n+1} = V_n M$$

= $V_0 M^n M$ $\searrow par hypothèse de récurrence$
= $V_0 M^{n+1}$

A retenir

L'ingrédient essentiel ici est la Formule des Probabilités Totales.

2.3 Etats stables d'une chaîne de Markov homogène

Definition 8. Soit (X_n) une chaîne de Markov homogène à r états, de matrice de transition M. Soit $\pi = (\pi_1, \dots, \pi_r) \in \mathbb{R}^r$ un vecteur ligne définissant une loi de probabilité, *i.e.* dont les coefficients sont positifs et de somme égale à 1. On dit que π est un état stable de la chaîne de Markov si $\pi = \pi M$. Si c'est le cas, on dit aussi que la loi de probabilité associée à π est une loi stationnaire de la chaîne de Markov.

Remarque 8. Si il existe un instant n tel que X_n suit la loi de probabilité de π (i.e. tel que $V_n = \pi$), alors pour tout $k \ge n$, X_k suit également la loi de probabilité de π (en vertu de la formule $V_{n+1} = V_n M$). La loi stationne bien.

Théoreme 3. Soit (X_n) une chaîne de Markov homogène à r états, de matrice de transition M. Soit $\pi = (\pi_1, \dots, \pi_r) \in \mathbb{R}^r$. Alors

 $\pi \text{ est un \'etat stable de la chaîne de Markov} \iff \begin{cases} {}^t\pi \text{ est un vecteur propre de }{}^tM \text{ associ\'e \`a la valeur propre 1} \\ \pi \text{ d\'efinit une loi de probabilit\'e} \end{cases}$ $\iff \begin{cases} {}^t\pi = {}^tM^t\pi \\ \forall j \in [\![1,r]\!], \ \pi_j \geqslant 0 \\ \sum_{j=1}^r \pi_j = 1 \end{cases}$

Démonstration. $\pi = \pi M \iff {}^t\pi = {}^t(\pi M) \iff {}^t\pi = {}^tM^t\pi.$

Definition 9. Soit (X_n) une chaîne de Markov homogène à r états notés $1, 2, \ldots, r$. On dit que la suite (X_n) converge en loi si il existe $(\pi_1, \ldots, \pi_r) \in \mathbb{R}^r$ tel que :

$$\forall k \in [1, r], \lim_{n \to +\infty} \mathbb{P}([X_n = k]) = \pi_k$$

Remarque 9. L'état k est fixé, c'est le temps n qui tend vers $+\infty$ (on regarde ce qu'il se passe en temps long, ou pour le dire autrement, on regarde le comportement asymptotique en temps).

Théoreme 4. Soit (X_n) une chaîne de Markov homogène à r états notés $1, 2, \ldots, r$. Si la suite (X_n) converge en loi, alors la loi limite est nécessairement une loi stationnaire de la chaîne de Markov. Autrement dit, si, pour tout $j \in [1, r]$, $\pi_j = \lim_{n \to +\infty} \mathbb{P}([X_n = j])$ existe, alors le vecteur $\pi = (\pi_1, \ldots, \pi_r)$ est un état stable de la chaîne de Markov.

Remarque 10. Ce thoérème permet, au choix :

- \bullet de vérifier qu'un vecteur ligne π (donné dans l'énoncé) est un état stable de la chaîne de Markov
- de découvrir un état stable de la chaîne de Markov en calculant $\lim_{n\to+\infty} \mathbb{P}([X_n=j])$ (dans ce cas, le vecteur π n'est pas donné à l'avance)

Démonstration. On passe à la limite dans l'égalité $V_{n+1} = V_n M$. On trouve $\pi = \pi M$.

Exercice 4 : On considère un e élève qui souhaite revoir l'intégralité de GoT pendant sa période de révisions avant les écrits.

- Après une heure de travail, la probabilité que l'élève aille voir un épisode est égale à 0,8.
- Après un épisode, la probabilité que l'élève retourne travailler est égale à 0, 2.

On note $V_0 = (\alpha \quad \beta) \in \mathcal{M}_{1,2}(\mathbb{R})$ l'état initial.

- 1. Tracer le graphe probabiliste associé à cette chaîne de Markov, que l'on notera (X_n) .
- 2. Ecrire la matrice de transition M.
- 3. Soit $n \in \mathbb{N}^*$. Déterminer le $n^{\rm e}$ état probabiliste V_n .
- 4. En déduire un état stable π .
- 5. Conclure sur le caractère raisonnable d'une telle entreprise.