Objectif du DM

On rappelle qu'un nombre $a \in \mathbb{R}$ est rationnel si il existe deux entiers relatifs p et q, avec $q \neq 0$, tels que $a = \frac{p}{q}$. L'objectif de ce DM est de montrer que le nombre e n'est pas rationnel (autrement dit : $e \notin \mathbb{Q}$).

On note, pour tout $n \in \mathbb{N}$, $u_n = \int_0^1 x^n e^x dx$.

1. Justifier que la suite (u_n) est bien définie.

Démonstration. Soit $n \in \mathbb{N}$. La fonction $f_n : x \mapsto x^n e^x$ est continue sur le segment [0,1], donc u_n est bien défini. □

2. (a) Calculer u_0 , u_1 et u_2 .

Démonstration. • $u_0 = \int_0^1 e^x dx = [e^x]_0^1 = [e-1]$.

• $u_1 = \int_0^1 x e^x dx$. On effectue une IPP:

$$\begin{vmatrix} u(x) = x & u'(x) = 1 \\ v'(x) = e^x & v(x) = e^x \end{vmatrix}$$

Cette IPP est valide car les fonctions u et v sont de classe C^1 sur le segment [0,1].

$$\int_0^1 x e^x dx = \left[x e^x \right]_0^1 - \int_0^1 e^x dx$$
$$= e - u_0$$
$$= e - (e - 1)$$
$$= 1$$

 $\operatorname{donc}\left[u_1=1\right]$

• $u_2 = \int_0^1 x^2 e^x dx$. On effectue une IPP:

$$\begin{vmatrix} u(x) = x^2 & u'(x) = 2x \\ v'(x) = e^x & v(x) = e^x \end{vmatrix}$$

Cette IPP est valide car les fonctions u et v sont de classe \mathcal{C}^1 sur le segment [0,1].

$$\int_{0}^{1} x^{2} e^{x} dx = \left[x^{2} e^{x} \right]_{0}^{1} - \int_{0}^{1} 2x e^{x} dx$$
$$= e - 2u_{1}$$
$$= e - 2$$

donc $u_2 = e - 2$

(b) Montrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} = e - (n+1)u_n$.

Démonstration. Il s'agit de généraliser les deux calculs précédents. Soit $n \in \mathbb{N}$. On a $u_{n+1} = \int_0^1 x^{n+1} e^x dx$. On effectue une IPP:

$$\begin{vmatrix} u(x) = x^{n+1} & u'(x) = (n+1)x^n \\ v'(x) = e^x & v(x) = e^x \end{vmatrix}$$

Cette IPP est valide car les fonctions u et v sont de classe \mathcal{C}^1 sur le segment [0,1].

$$\int_0^1 x^{n+1} e^x dx = \left[x^{n+1} e^x \right]_0^1 - \int_0^1 (n+1) x^n e^x dx$$
$$= e - (n+1) u_n$$

d'où $u_{n+1} = e - (n+1)u_n$.

(c) En déduire qu'il existe deux suites d'entiers (a_n) et (b_n) telles que, pour tout $n \in \mathbb{N}$, $u_n = a_n e + b_n$.

Démonstration. Montrons par récurrence : $\forall n \in \mathbb{N}, \mathcal{P}(n)$

où $\mathcal{P}(n)$: « il existe deux entiers a_n et b_n tels que $u_n = a_n e + b_n$ »

Initialisation:

 $u_0 = e - 1$ donc en posant $a_0 = 1$ et $b_0 = -1$, il vient que $\mathcal{P}(0)$ est vrai.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$. Montrons $\mathcal{P}(n+1)$.

Par hypothèse de récurrence, il existe a_n et b_n deux entiers tels que $u_n = a_n e + b_n$. D'après la question 2b,

$$u_{n+1} = e - (n+1)u_n$$

$$= e - (n+1)(a_n e + b_n)$$

$$= (1 - (n+1)a_n)e - (n+1)b_n$$

$$= a_{n+1}e + b_{n+1}$$

où $a_{n+1} = 1 - (n+1)a_n$ et $b_{n+1} = -(n+1)b_n$ sont bien deux entiers (sommes et produits d'entiers). D'où $\mathcal{P}(n+1)$.

Par récurrence, on a montré que : pour tout $n \in \mathbb{N}$, il existe deux entiers a_n et b_n tels que $u_n = a_n e + b_n$. \square

3. (a) Justifier que, pour tout $x \in [0, 1]$, $e^x \le e$.

Démonstration. La fonction exponentielle est croissante sur [0,1] donc, pour tout $x \in [0,1]$, $e^x \le e^1 = e$. \Box

(b) En déduire que, pour tout $n \in \mathbb{N}$, $0 < u_n \le \frac{e}{n+1}$.

Démonstration. Soit $n \in \mathbb{N}$.

- Tout d'abord, la fonction $f_n: x \mapsto x^n e^x$ est continue sur le segment [0,1] et, pour tout $x \in]0,1]$, $f_n(x) > 0$. Donc $u_n > 0$ par positivité de l'intégrale (les bornes étant rangées dans l'ordre croissant).
- Ensuite, pour tout $x \in [0,1]$, $x^n e^x \le x^n e$ d'après la question précédente. Par croissance de l'intégrale, les bornes étant rangées dans l'ordre croissant (0 < 1), on a :

$$u_n = \int_0^1 x^n e^x dx \le \int_0^1 x^n e^x dx = e \int_0^1 x^n dx = e \left[\frac{x^{n+1}}{n+1} \right]_0^1 = e \frac{1}{n+1} = \frac{e}{n+1}$$

Commentaire

On peut aussi minorer u_n en écrivant :

$$u_n \ge \int_0^1 x^n \, \mathrm{d}x = \frac{1}{n+1}$$

(c) Conclure que $u_n \xrightarrow[n \to +\infty]{} 0$.

Démonstration. On sait que $\frac{\mathrm{e}}{n+1} \xrightarrow[n \to +\infty]{} 0$ donc, par théorème d'encadrement et d'après la question précédente, $u_n \xrightarrow[n \to +\infty]{} 0$.

4. On suppose dans cette question que e est rationnel. Ainsi, il existe $(p,q) \in \mathbb{N} \times \mathbb{N}^*$ tel que $e = \frac{p}{q}$ (car e > 0).

(a) Vérifier que, pour tout $n \in \mathbb{N}$, $u_n = \frac{a_n p + b_n q}{q}$.

 $D\acute{e}monstration$. Soit $n \in \mathbb{N}$. On a

$$u_n = a_n e + b_n = a_n \frac{p}{q} + b_n = \frac{a_n p + b_n q}{q}$$

(b) Montrer que, pour tout $n \in \mathbb{N}$, $a_n p + b_n q$ est un entier.

Démonstration. Soit $n \in \mathbb{N}$. Les nombres a_n, p, b_n et q sont tous des entiers donc $a_n p + b_n q$ est un entier. \square

- (c) En utilisant les questions précédentes, montrer que, pour tout $n \in \mathbb{N}$, $a_n p + b_n q > 0$ et donc $a_n p + b_n q \ge 1$. Démonstration. Soit $n \in \mathbb{N}$.
 - Tout d'abord, on remarque que $a_np + b_nq = qu_n$. Or, $q \in \mathbb{N}^*$ donc q > 0 et $u_n > 0$ d'après la question 3b. Donc $a_np + b_nq > 0$.
 - Il vient alors que $a_np + b_nq$ est un entier strictement positif. Le plus petit des entiers strictement positifs est 1, d'où $a_np + b_nq \ge 1$.

(d) En déduire que, pour tout $n \in \mathbb{N}$, $u_n \ge \frac{1}{q}$.

 $D\'{e}monstration$. Soit $n \in \mathbb{N}$. On sait que $u_n = \frac{a_n p + b_n q}{q}$ et que $a_n p + b_n q \ge 1$. Puisque q > 0, on peut donc en déduire que $u_n \ge \frac{1}{q}$.

(e) Conclure.

Démonstration. On sait que :

- $\bullet \ u_n \xrightarrow[n \to +\infty]{} 0.$
- pour tout $n \in \mathbb{N}$, $u_n \ge \frac{1}{q}$.

Par passage à la limite, on obtient : $0 \ge \frac{1}{q}$. Or, $\frac{1}{q} > 0$. C'est absurde.

On peut alors conclure que e est irrationel.