DS1 barème

Exercice 1 (inspiré de EDHEC 2016)

On désigne par I la matrice identité de $\mathcal{M}_3(\mathbb{R})$ et on pose $A = \begin{pmatrix} 1 & 2 & -2 \\ -4 & -3 & 4 \\ -2 & 0 & 1 \end{pmatrix}$.

1. a) Calculer
$$(A - I)(A + I)^2$$
.

- 1 pt:
$$(A-I)(A+I) = \begin{pmatrix} -4 & -4 & 4 \\ 0 & 0 & 0 \\ -4 & -4 & 4 \end{pmatrix}$$
 ou $(A+I)^2 = \begin{pmatrix} 0 & 0 & 0 \\ -8 & -4 & 8 \\ -8 & -4 & 8 \end{pmatrix}$

- 1 pt :
$$(A-I)(A+I)^2 = 0_{\mathcal{M}_3(\mathbb{R})}$$

b) En déduire que A est inversible et déterminer A^{-1} .

- 1 pt :
$$(A-I)(A+I)^2 = A^3 + A^2 - A - I$$

- 1 pt :
$$A(A^2 + A - I) = I$$

On enlève un point si un produit AI n'est pas simplifié à la fin.

2. On note
$$E_1(A) = \{U \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AU = U\}.$$

a) Résoudre le système suivant :
$$(S_1)$$

$$\begin{cases} 2y - 2z = 0 \\ -4x - 4y + 4z = 0 \\ -2x = 0 \end{cases}$$

- 1 pt : résolution
$$\begin{cases} x &= 0 \\ & y = z \end{cases}$$

- **b)** Déterminer $E_1(A)$.
 - 1 pt : écriture système

- 1 pt :
$$E_1(A) = \operatorname{Vect} \left(\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right)$$

- c) En déduire que $E_1(A)$ est un sous-espace vectoriel de $\mathcal{M}_{3,1}(\mathbb{R})$ et déterminer une base de $E_1(A)$.
 - 1 pt : $E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 0\\1\\1 \end{pmatrix}\right)$ donc $E_1(A)$ est un sous-espace vectoriel de $\mathscr{M}_{3,1}(\mathbb{R})$.

- 1 pt : la famille
$$\mathcal{F}_1 = \left(\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right)$$
 engendre $E_1(A)$

- 1 pt : la famille
$$\mathcal{F}_1 = \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix}$$
 est libre

3. On note
$$E_{-1}(A) = \{ U \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AU = -U \}.$$

a) Résoudre le système suivant :
$$(S_{-1})$$

$$\begin{cases} 2x + 2y - 2z = 0 \\ -4x - 2y + 4z = 0 \\ -2x + 2z = 0 \end{cases}$$

- 1 pt : résolution
$$\begin{cases} x & = z \\ & y = 0 \end{cases}$$

- **b)** Déterminer $E_{-1}(A)$.
 - 1 pt : écriture système

- 1 pt :
$$E_{-1}(A) = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right)$$

- c) En déduire que $E_{-1}(A)$ est un sous-espace vectoriel de $\mathcal{M}_{3,1}(\mathbb{R})$ et déterminer une base de $E_{-1}(A)$.
 - 1 pt : $E_{-1}(A) = \text{Vect}\left(\begin{pmatrix}1\\0\\1\end{pmatrix}\right)$ donc $E_{-1}(A)$ est un sous-espace vectoriel de $\mathscr{M}_{3,1}(\mathbb{R})$.

- 1 pt : la famille
$$\mathcal{F}_{-1}=\left(\begin{pmatrix}1\\0\\1\end{pmatrix}\right)$$
 engendre $E_{-1}(A)$

- 1 pt : la famille
$$\mathcal{F}_{-1} = \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right)$$
 est libre

4. On note
$$P = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}$$
.

- a) Démontrer que P est inversible et que $P^{-1} = \begin{pmatrix} -2 & -1 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$. On détaillera précisément les étapes de calcul.
 - 1 pt : P est inversible

- 2 pts:
$$P^{-1} = \begin{pmatrix} -2 & -1 & 2\\ 2 & 1 & -1\\ 1 & 1 & -1 \end{pmatrix}$$

b) Montrer que $P^{-1}AP = T$ où T est la matrice triangulaire supérieure $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$.

- 1 pt : pour
$$P^{-1}A = \begin{pmatrix} -2 & -1 & 2 \\ 0 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
 ou pour $AP = \begin{pmatrix} 0 & -1 & 3 \\ 1 & 0 & -2 \\ 1 & -1 & 2 \end{pmatrix}$

- 1 pt : pour $P^{-1}AP = T$.
- c) Démontrer : $\forall n \in \mathbb{N}, A^n = PT^nP^{-1}$.
 - 1 pt: initialisation
 - 2 pts : hérédité

5. a) Exhiber une matrice $N \in \mathcal{M}_3(\mathbb{R})$ telle que T s'écrit T = D + N, où :

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- 1 pt :
$$N = T - D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

- **b)** Calculer N^2 et en déduire N^k pour tout $k \in \mathbb{N}$.
 - 1 pt : $N^2 = 0_{\mathcal{M}_3(\mathbb{R})}$
 - 1 pt : récurrence immédiate
- c) Soit $n \in \mathbb{N}$. Déterminer T^n en fonction des matrices D et N, à l'aide de la formule du binôme de Newton.

- 1 pt :
$$D$$
 et N commutent car $DN = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} = ND$

- 1 pt : formule du binôme correcte
- 1 pt : découpage valable car $n \geqslant 1$
- 1 pt : $\forall k \ge 2, \ N^k = 0_{\mathcal{M}_3(\mathbb{R})}$
- 1 pt : $T^n = D^n + n D^{n-1} N$
- 1 pt : cas n = 0

Aucun point si la formule du binôme est fausse.

Exercice 2 (inspiré de ECRICOME 2008)

On note, pour tout $n \in \mathbb{N}^*$, $f_n : x \mapsto 1 + \ln(x+n)$ et $h_n : x \mapsto x - f_n(x)$. On admet que $\ln(2) \simeq 0,69$.

Etude de f_1

- 1. Donner sans démonstration le domaine de définition \mathcal{D}_{f_1} de la fonction f_1 .
 - 1 pt : $\mathcal{D}_{f_1} =]-1, +\infty[$
- 2. Dresser le tableau de variations de la fonction f_1 . On ne justifiera pas les limites.
 - 1 pt : La fonction f_1 est dérivable sur $]-1,+\infty[$ comme somme et composée de fonctions dérivables
 - 1 pt : $f_1'(x) = \frac{1}{x+1} > 0$
 - 1 pt:

x	-1 $+\infty$
Signe de $f'_1(x)$	+
Variations de f_1	+∞

(il faut que les limites soient correctes pour avoir le point)

- 3. a. Déterminer l'équation de la tangente en 0 au graphe de f_1 .
 - 1 pt : l'équation de la tangente en 0 au graphe de f_1 est y = x + 1

b. Montrer que, pour tout $x \in \mathcal{D}_{f_1}$, $f_1(x) \leqslant x + 1$.

- 1 pt : la fonction f_1 est concave sur $]-1,+\infty[$

- 1 pt : son graphe est en dessous de sa tangente en 0

4. Tracer la courbe représentative de f_1 .

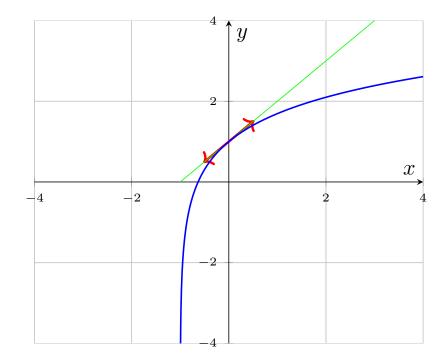
- 1 pt : tracé de la tangente en 0

- 1 pt : tracé cohérent avec $f_1(0) = 1$

- 1 pt : tracé cohérent avec les limites

- 1 pt : tracé cohérent avec la concavité de f_1

 $D\'{e}monstration.$



Etude d'une suite implicite

5. Soit $n \in \mathbb{N}^*$. Montrer que l'équation $f_n(x) = x$ admet une unique solution dans $]0, +\infty[$, notée α_n . (On ne cherchera pas à calculer α_n)

- 1 pt :
$$h'_n(x) = 1 - \frac{1}{x+n} = \frac{x+n-1}{x+n} > 0$$

- 1 pt:

x	0	$+\infty$
Signe de $h'_n(x)$	+	
Variations de h_n	$h_n(0)$	+∞

- 1 pt : h_n est continue sur $]0,+\infty[$ et strictement croissante sur $]0,+\infty[$

- 1 pt : h_n réalise une bijection de $]0, +\infty[$ sur $h_n(]0, +\infty[) =]h_n(0), +\infty[$
- 1 pt : $h_n(0) < 0$ donc $0 \in]h_n(0), +\infty[$ (il faut expliquer pourquoi $h_n(0) < 0$ pour avoir le point)
- 6. a. Soit $n \in \mathbb{N}^*$. Montrer que

$$h_n(\alpha_{n+1}) = \ln\left(\frac{\alpha_{n+1} + n + 1}{\alpha_{n+1} + n}\right)$$

- 1 pt : penser à utiliser $\alpha_{n+1} = f_{n+1}(\alpha_{n+1})$
- 1 pt : fin du calcul correct
- **b.** En déduire que la suite (α_n) est strictement monotone. On précisera son sens de variations.
 - 1 pt : $\frac{\alpha_{n+1} + n + 1}{\alpha_{n+1} + n} > 1$ donc $h_n(\alpha_{n+1}) > 0 = h_n(\alpha_n)$
 - 1 pt : composition par h_n^{-1} , la bijection réciproque de h_n (de même stricte monotonie, c'est-à-dire strictement croissante)
- 7. a. Montrer que, pour tout $n \in \mathbb{N}^*$, $\alpha_n > 1 + \ln(n)$.
 - 1 pt : penser à utiliser $\alpha_n = f_n(\alpha_n) = 1 + \ln(\alpha_n + n)$
 - 1 pt : $\alpha_n > 0$ donc $\ln(\alpha_n + n) > \ln(n)$ par stricte croissance de la fonction $x \mapsto \ln(x)$ sur $]0, +\infty[$
 - **b.** En déduire la limite de la suite (α_n) .
 - 1 pt : $\alpha_n \xrightarrow[n \to +\infty]{} +\infty$ par théorème de comparaison
- 8. a. Montrer que

$$\lim_{n \to +\infty} h_n \left(\ln(n) + 2 \right) = 1$$

On admet alors qu'il existe un rang $n_0 \ge 2$ tel que, pour tout $n \ge n_0$, $h_n(\ln(n) + 2) > 0$.

- 1 pt: $h_n(\ln(n) + 2) = 1 \ln\left(1 + \frac{\ln(n) + 2}{n}\right)$
- 1 pt : $\frac{\ln(n)+2}{n} \xrightarrow[n \to +\infty]{} 0$ par croissances comparées
- **b.** Montrer que, pour tout $n \ge n_0$, $\alpha_n < \ln(n) + 2$.
 - 1 pt : pour $n \ge n_0$, $h_n(\ln(n) + 2) > h_n(\alpha_n)$
 - 1 pt : composition par h_n^{-1} , la bijection réciproque de h_n (de même stricte monotonie, c'est-à-dire strictement croissante)
- c. En déduire un équivalent simple de α_n lorsque n tend vers $+\infty$.
 - 1 pt : $1 + \ln(n) < \alpha_n < \ln(n) + 2$ donc $\frac{1}{\ln(n)} + 1 < \frac{\alpha_n}{\ln(n)} < 1 + \frac{2}{\ln(n)}$ (pas de point si l'argument $\ln(n) > 0$ car $n \ge n_0 \ge 2$ n'est pas donné)
 - 1 pt : $\alpha_n \underset{n \to +\infty}{\sim} \ln(n)$ (pas de point si le théorème d'encadrement n'est pas cité)
- 9. a. Déterminer la nature de la série $\sum_{n} \frac{\alpha_n}{n}$
 - 1 pt : pour tout $n \geqslant 1$, $\frac{\alpha_n}{n} \geqslant 0$ et $\frac{\ln(n)}{n} \geqslant 0$ et $\frac{\alpha_n}{n} \sim \frac{\ln(n)}{n}$
 - 1 pt : par critère d'équivalence pour les séries à termes positifs, les séries $\sum \frac{\alpha_n}{n}$ et $\sum \frac{\ln(n)}{n}$ ont même nature

- 1 pt: $\frac{1}{\ln(n)} \underset{n \to +\infty}{\longrightarrow} 0$ donc $\frac{1}{n} = \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n} \right)$
- 1 pt : la série $\sum \frac{1}{n}$ diverge (série de Riemann d'exposant 1)
- 1 pt : par critère de négligeabilité pour les séries à termes positifs, la série $\sum \frac{\ln(n)}{n}$ diverge et donc la série $\sum \frac{\alpha_n}{n}$ diverge (pas de point si il manque l'argument : pour tout $n \geqslant 1, \, \frac{1}{n} \geqslant 0$ et $\frac{\ln(n)}{n} \geqslant 0$)
- **b.** Déterminer la nature de la série $\sum \frac{\alpha_n}{n^2}$.
 - 1 pt : $\sum \frac{\alpha_n}{n^2}$ et $\sum \frac{\ln(n)}{n^2}$ ont même nature (même raisonnement que la question précédente)
 - 1 pt : $\frac{\ln(n)}{n^{1/2}} \underset{n \to +\infty}{\longrightarrow} 0$ par croissances comparées donc $\frac{\ln(n)}{n^2} = \underset{n \to +\infty}{o} \left(\frac{1}{n^{3/2}}\right)$
 - 1 pt : la série $\sum \frac{1}{n^{3/2}}$ converge (série de Riemann d'exposant $\frac{3}{2} > 1$)
 - 1 pt : par critère de négligeabilité pour les séries à termes positifs, la série $\sum \frac{\ln(n)}{n^2}$ converge et donc la série $\sum \frac{\alpha_n}{n^2}$ diverge (pas de point si il manque l'argument : pour tout $n\geqslant 1,\, \frac{1}{n^{3/2}}\geqslant 0$ et $\frac{\ln(n)}{n^2}\geqslant 0$)

Valeur approchée de α_1 par dichotomie

- 10. Montrer que $1 < \alpha_1 < 3$. On pourra utiliser la question 7a.
 - 1 pt : $\alpha_1 > 1 + \ln(1) = 1$
 - 1 pt : $h_1(3) = 2(1 \ln(2)) > 0$ car $\ln(2) \simeq 0.69$
 - 1 pt : $h_1(3)>h_1(\alpha_1)$ et, en composant par h_1^{-1} qui est strictement croissante, on obtient $3>\alpha_1$
- 11. Recopier et compléter le script **Python** suivant afin qu'il renvoie une valeur approchée de α_1 à 10^{-4} près, obtenue à l'aide de la méthode par dichotomie.

```
import numpy as np
a,b = 1,3
while b-a > 10**(-4)
c = (a + b) / 2
if c-1-np.log(c+1) > 0
b = c
else:
a = c
print (c)
```

- 1 pt: while b-a > 10**(-4):
- 2 pt : if c-1-np.log(c+1) > 0:
- 1 pt : print(c)

Valeur approchée de α_1 par méthode de point fixe

On définit la suite (u_n) par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f_1(u_n) \end{cases}$$

- 12. Démontrer que la suite (u_n) est bien définie et que, pour tout $n \in \mathbb{N}$, $u_n \geqslant 1$.
 - 1 pt : initialisation
 - 2 pt : hérédité (1pt pour u_{n+1} est bien défini et 1pt pour $u_{n+1} \geqslant 1$)
- 13. Montrer que, pour tout $n \in \mathbb{N}$,

$$|u_{n+1} - \alpha_1| \leqslant \frac{1}{2} |u_n - \alpha_1|$$

- 1 pt : $|f_1'(x)| = \frac{1}{x+1} \leqslant \frac{1}{1+1} = \frac{1}{2}$
- 1 pt : on pose $x=u_n\in [1,+\infty[$ (cf question 12) et $y=\alpha_1\in [1,+\infty[$ (cf question 10)
- 1 pt : $|f_1(u_n)-f_1(\alpha_1)|\leqslant \frac{1}{2}\,|u_n-\alpha_1|$ donc $|u_{n+1}-\alpha_1|\leqslant \frac{1}{2}\,|u_n-\alpha_1|$
- 14. En déduire que, pour tout $n \in \mathbb{N}$,

$$|u_n - \alpha_1| \leqslant \left(\frac{1}{2}\right)^{n-1}$$

- 2 pt : initialisation (0 pt si la preuve commence en affirmant P(0))
- 2 pt : hérédité
- 15. En déduire la limite de la suite (u_n) .
 - 1 pt : $\left(\frac{1}{2}\right)^{n-1} \underset{n \to +\infty}{\longrightarrow} 0$ car $\left|\frac{1}{2}\right| < 1$
 - 1 pt : $|u_n \alpha_1| \underset{n \to +\infty}{\longrightarrow} 0$ par théorème d'encadrement
 - 1 pt : $u_n \xrightarrow[n \to +\infty]{} \alpha_1$
- 16. Recopier et compléter la fonction Python suivante pour qu'elle
 - prenne en argument un réel eps strictement positif
 - renvoie une liste [n,u] où n est un entier qui vérifie $|u_n \alpha_1| \leq \text{eps}$ et $u = u_n$.

- 1 pt : while 1/(2**(n-1)) > eps :
- -1 pt : n = n + 1
- -1 pt : u = 1 + np.log(u+1)

Exercice 3 (EML 2019)

On considère la fonction f définie sur $]0, +\infty[$ par :

$$\forall t \in]0, +\infty[, \ f(t) = t + \frac{1}{t}$$

PARTIE A: Étude d'une fonction d'une variable

- 1. Étudier les variations de la fonction f sur $]0, +\infty[$. Dresser le tableau de variations de f en précisant les limites en 0 et $+\infty$.
 - 1 pt : la fonction f est dérivable sur $]0,+\infty[$

- 1 pt:
$$f'(t) = 1 - \frac{1}{t^2} = \frac{t^2 - 1}{t^2} = \frac{(t - 1)(t + 1)}{t^2}$$

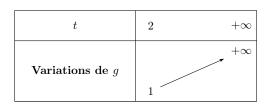
- 1 pt:

t	0	1	$+\infty$
Signe de $f'(t)$	_	0	+
Variations de f	+∞		+∞

- 2. Montrer que f réalise une bijection de $[1, +\infty[$ vers $[2, +\infty[$.
 - 1 pt : la fonction f est continue (car dérivable) sur $[1, +\infty[$ et strictement croissante sur $[1, +\infty[$
 - 1 pt : f réalise une bijection de $[1, +\infty[$ sur $f([1, +\infty[) = [2, +\infty[$

On note $g:[2,+\infty[$ \to $[1,+\infty[$ la bijection réciproque de la restriction de f à $[1,+\infty[$.

- 3. a) Dresser le tableau de variations de q.
 - 1 pt : D'après le théorème de la bijection, la fonction g est continue sur $[2, +\infty[$ et strictement monotone sur $[2, +\infty[$, de même sens de variation que f sur $[1, +\infty[$
 - 1 pt:



- b) Justifier que la fonction g est dérivable sur $]2, +\infty[$.
 - 1 pt : f réalise une bijection de $]1, +\infty[$ sur $f(]1, +\infty[) =]2, +\infty[$
 - 1 pt : $\forall t \in]1, +\infty[, f'(t) = \frac{(t-1)(t+1)}{t^2} > 0$
- c) Soit $y \in [2, +\infty[$. En se ramenant à une équation du second degré, résoudre l'équation f(t) = y d'inconnue $t \in]0, +\infty[$. En déduire une expression de g(y) en fonction de y.
 - 1 pt : $f(t) = y \iff t^2 yt + 1 = 0$
 - 1 pt : $\Delta = (-y)^2 4 \times 1 \times 1 = y^2 4 \ge 0$
 - 2 pt : pour tout $y \in]2, +\infty[, g(y) = \frac{y + \sqrt{y^2 4}}{2}]$
 - 1 pt : g(2) = 1

PARTIE C: Étude d'une suite

On introduit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$u_1 = 1$$
 et $\forall n \in \mathbb{N}^*, \ u_{n+1} = u_n + \frac{1}{n^2 u_n} = \frac{1}{n} f(n u_n)$

- 8. Montrer que, pour tout n de \mathbb{N}^* , u_n existe et $u_n \geqslant 1$.
 - 1 pt: initialisation
 - 3 pt : hérédité (1pt pour u_{n+1} est bien défini et 2pt pour $u_{n+1} \geqslant 1$)
- 9. Recopier et compléter les lignes $\underline{3}$ et $\underline{4}$ de la fonction **Python** suivante afin que, prenant en argument un entier n de \mathbb{N}^* , elle renvoie la valeur de u_n .

- 1 pt: for k in range(1,n): (on donne le point si la boule for a la bonne taille)
- 2 pt : u = u + 1/(k**2 * u) (on donne les points si la formule est cohérente avec le choix de la boucle for)
- 10. On pose, pour tout n de \mathbb{N}^* , $v_n = u_{n+1} u_n$.
 - a) Montrer: $\forall n \in \mathbb{N}^*, \ 0 \leqslant v_n \leqslant \frac{1}{n^2}.$
 - 1 pt : $v_n = \frac{1}{n^2 u_n}$
 - 1 pt : $0 \le v_n \le \frac{1}{n^2}$ (0pt si aucun argument)
 - **b)** En déduire la nature de la série $\sum_{n\geqslant 1}v_n$.
 - 1 pt : pour tout $n \geqslant 1, \ 0 \leqslant v_n \leqslant \frac{1}{n^2}$
 - 1 pt : la série $\sum \frac{1}{n^2}$ converge (série de Riemann d'exposant 2 > 1)
 - 1 pt : par critère de comparaison pour les séries à termes positifs, la série $\sum v_n$ converge
 - c) Calculer, pour tout n supérieur ou égal à 2, $\sum_{k=1}^{n-1} v_k$.

En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers un réel ℓ , que l'on ne cherchera pas à déterminer.

- 1 pt : $\sum_{k=1}^{n-1} v_k = u_n 1$ par télescopage
- 1 pt : $u_n = 1 + \sum_{k=1}^{n-1} v_k$ et la série $\sum v_n$ converge donc (u_n) est convergente

- 11. a) Montrer que, pour tout entier k supérieur ou égal à 2, on a : $\frac{1}{k^2} \leqslant \int_{k-1}^k \frac{1}{t^2} dt$.
 - 1 pt : pour tout $t \in [k-1, k], \frac{1}{(k-1)^2} \geqslant \frac{1}{t^2} \geqslant \frac{1}{k^2}$
 - 1 pt : par croissance de l'intégrale, les bornes étant dans l'ordre croissant $(k-1 \le k)$
 - **b**) Pour tous entiers n et p tels que $2 \le p < n$, calculer $\sum_{k=p}^{n-1} v_k$ et en déduire :

$$0 \leqslant u_n - u_p \leqslant \int_{n-1}^{n-1} \frac{1}{t^2} dt$$

- 1 pt : $\sum\limits_{k=p}^{n-1}v_k \ = \ u_n-u_p$ par télescopage
- 1 pt : 0 $\leq v_k \leq \frac{1}{k^2} \leq \int_{k-1}^k \frac{1}{t^2} dt$
- 1 pt : par sommation : $0 \le u_n u_p \le \int_{p-1}^{n-1} \frac{1}{t^2} dt$ (0 pt si la relation de Chasles n'est pas citée)
- c) En déduire, pour tout entier n supérieur ou égal à $3: u_2 \leq u_n \leq 1 + u_2$. Montrer alors que ℓ appartient à l'intervalle [2,3].
 - 1 pt : On applique le résultat de la question précédente avec p=2 (on a bien : $2 \leqslant p < n$)

- 1 pt :
$$\int_{1}^{n-1} \frac{1}{t^2} dt = \left[-\frac{1}{t} \right]_{1}^{n-1} = -\left(\frac{1}{n-1} - 1 \right) = 1 - \frac{1}{n-1}$$

- 1 pt : $1 \frac{1}{n-1} \le 1$ donc $u_2 \le u_n \le 1 + u_2$
- 1 pt : $u_2 = 2$ donc $2 \le u_n \le 3$. Par passage à la limite : $2 \le \ell \le 3$
- d) Montrer, pour tout entier p supérieur ou égal à 2:

$$0 \leqslant \ell - u_p \leqslant \frac{1}{p-1}$$

- 1 pt :
$$\int_{p-1}^{n-1} \frac{1}{t^2} dt = \left[-\frac{1}{t} \right]_{n-1}^{n-1} = -\left(\frac{1}{n-1} - \frac{1}{p-1} \right) = \frac{1}{p-1} - \frac{1}{n-1}$$

- 1 pt : En passant à la limite quand n tend vers $+\infty$ dans l'encadrement $0 \le u_n u_p \le \frac{1}{p-1} \frac{1}{n-1}$, on obtient $0 \le \ell u_p \le \frac{1}{p-1}$
- e) En déduire une fonction Python qui renvoie une valeur approchée de ℓ à 10^{-4} près.

- -1 pt : n = 2
- 1 pt : while 1 / (n-1) > 10**(-4):
- -1 pt : n = n + 1
- 1 pt : return suite(n)

Exercice 4 (ESCP 2005)

- 1. Quelle est la nature des séries $\sum_{n\geq 0} \frac{1}{n+1}$ et $\sum_{n\geq 0} \frac{1}{(n+1)^2}$?
 - 1 pt : la série $\sum\limits_{n\geqslant 0}\frac{1}{n+1}$ est une série de Riemann décalée d'exposant $\alpha=1$ donc diverge par critère de Riemann.
 - 1 pt : la série $\sum_{n\geqslant 0}\frac{1}{(n+1)^2}$ est une série de Riemann décalée d'exposant $\alpha=2$ donc converge par critère de Riemann.
- 2. Écrire une fonction **Python** qui prend en paramètre un entier \mathbf{n} et renvoie $S_{\mathbf{n}} = \sum_{k=0}^{\mathbf{n}} \frac{1}{(k+1)^2}$, somme partielle d'ordre \mathbf{n} de la série $\sum_{n\geqslant 0} \frac{1}{(n+1)^2}$.

- -1 pt : S = 0
- 1 pt: for k in range(n+1): (on donne le point si la boucle a la bonne taille)
- 1 pt : S = S + 1 / (k+1)**2 (on donne le point si c'est cohérent avec le choix de la boucle for)
- 3. On note $(a_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs, décroissante et de limite nulle. Pour tout entier naturel n, on pose :

$$u_n = \sum_{k=0}^{2n} (-1)^k a_k, \quad v_n = \sum_{k=0}^{2n+1} (-1)^k a_k, \quad s_n = \sum_{k=0}^n (-1)^k a_k$$

- a) Montrer que la suite (u_n) est décroissante, et que la suite (v_n) est croissante.
 - 2 pt : $u_{n+1} u_n = -a_{2n+1} + a_{2n+2}$
 - 1 pt : (a_n) est décroissante donc $a_{2n+2} \le a_{2n+1}$, et donc : $a_{2n+2} a_{2n+1} \le 0$
 - 1 pt : $v_{n+1} v_n = a_{2n+2} a_{2n+3}$
 - 1 pt : (a_n) est décroissante donc $a_{2n+3} \leqslant a_{2n+2}$, et donc : $a_{2n+2} a_{2n+3} \geqslant 0$
- b) Montrer, pour tout $n ext{ de } \mathbb{N} : v_n \leq u_n$.
 - 1 pt : $v_n u_n = -a_{2n+1} \le 0$ (car (a_n) est une suite de réels positifs)
 - 1 pt : théorème de convergence monotone bien utilisé pour montrer la convergence des suites (u_n) et (v_n)

En déduire que la suite (u_n) admet une limite s et que la suite (v_n) admet la même limite s.

- 1 pt : $v_n - u_n = -a_{2n+1} \underset{n \to +\infty}{\longrightarrow} 0$ donc les deux suites admettent la même limite

on donne également les 2 pt si le théorème des suites adjacentes est utilisé au lieu d'utiliser l'inégalité $v_n \leqslant u_n$

- c) En déduire que la suite (s_n) converge vers s.
 - 1 pt : Comme $s_{2n} \xrightarrow[n \to +\infty]{} s$, l'intervalle I contient tous les termes de la suite (s_{2n}) (i.e. tous les termes d'indices pairs de la suite (s_n)) sauf un nombre fini d'entre eux. Idem pour s_{2n+1}
 - 1 pt : On en déduit que l'intervalle I contient tous les termes de la suite (s_n) sauf un nombre fini d'entre eux

On donne également les deux points si un thm sur les suites extraites est cité

- 4. Montrer que la série $\sum_{n\geq 0} (-1)^n a_n$ est convergente.
 - 1 pt : D'après la question 3.c), la suite (s_n) des sommes partielles de la série $\sum (-1)^n a_n$ converge, donc la série converge
- 5. Montrer que la série $\sum_{n\geq 0} \frac{(-1)^n}{n+1}$ est convergente. On note $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1}$ sa somme.
 - 1 pt : Pour tout $n \in \mathbb{N}$, on note $a_n = \frac{1}{n+1}$
 - 1 pt : La suite (a_n) est une suite de réels strictement positifs, décroissante et de limite nulle
 - 1 pt : D'après la question 4, la série $\sum (-1)^n a_n$ (autrement dit la série $\sum \frac{(-1)^n}{n+1}$) est convergente
- **6.** a) Établir, pour tout réel t positif et pour tout n de \mathbb{N}^* , l'égalité :

$$\sum_{k=0}^{n-1} (-1)^k t^k = \frac{1}{1+t} - (-1)^n \frac{t^n}{1+t}$$

- 1 pt :
$$\sum_{k=0}^{n-1} (-1)^k t^k = \sum_{k=0}^{n-1} (-t)^k$$

- 1 pt :
$$\sum_{k=0}^{n-1} (-1)^k t^k = \frac{1-(-t)^n}{1-(-t)} = \frac{1}{1+t} - \frac{(-t)^n}{1+t} = \frac{1}{1+t} - (-1)^n \frac{t^n}{1+t}$$
 car $-t \neq 1$

b) En déduire, pour tout n de \mathbb{N}^* :

$$\sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} = \ln(2) - (-1)^n \int_0^1 \frac{t^n}{1+t} dt$$

- 1 pt : linéarité de l'intégrale citée au moins une fois
- 1 pt : $\int_0^1 \sum_{k=0}^{n-1} (-1)^k t^k dt = \sum_{k=0}^{n-1} (-1)^k \int_0^1 t^k dt = \sum_{k=0}^{n-1} (-1)^k \left[\frac{t^{k+1}}{k+1} \right]_0^1 = \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1}$
- 1 pt: $\int_0^1 \frac{1}{1+t} dt = \left[\ln(|1+t|) \right]_0^1 = \ln(|2|) \ln(|1|) = \ln(2)$
- c) Démontrer, pour tout $n \in \mathbb{N}^*$:

$$\left| \int_0^1 \frac{t^n}{1+t} dt \right| \leqslant \frac{1}{n+1}$$

- 1 pt : Par inégalité triangulaire, les bornes de l'intégrale étant dans l'ordre croissant :

$$\left| \int_0^1 \frac{t^n}{1+t} dt \right| \leqslant \int_0^1 \left| \frac{t^n}{1+t} \right| dt$$

- 1 pt :
$$\left| \frac{t^n}{1+t} \right| = \frac{|t^n|}{|t+1|} = \frac{|t|^n}{|t+1|} = \frac{t^n}{t+1}$$
 car $t > 0$ et $t+1 > 0$.

- 1 pt :
$$t > 0$$
, $1 + t > 1$, donc $\frac{1}{t+1} < 1$ et $\frac{t^n}{1+t} < t^n$.

- 1 pt : par croissance de l'intégrale, les bornes étant rangées dans l'ordre croissant :

$$\int_0^1 \frac{t^n}{1+t} dt < \int_0^1 t^n dt = \left[\frac{t^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}$$

d) En déduire la valeur de $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1}$.

$$- \mathbf{1} \mathbf{pt} : \left| (-1)^n \int_0^1 \frac{t^n}{1+t} dt \right| = |(-1)^n| \left| \int_0^1 \frac{t^n}{1+t} dt \right| = \left| \int_0^1 \frac{t^n}{1+t} dt \right| \leqslant \frac{1}{n+1}$$

- 1 pt : $\frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$ donc, par théorème d'encadrement, on en déduit que : $(-1)^n \int_0^1 \frac{t^n}{1+t} \ dt \underset{n \to +\infty}{\longrightarrow} 0$
- 1 pt : Tous les objets considérés admettant une limite, on en déduit que :

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1} = \lim_{n \to +\infty} \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} = \lim_{n \to +\infty} \ln(2) - \lim_{n \to +\infty} (-1)^n \int_0^1 \frac{t^n}{1+t} dt = \ln(2)$$