Planche HEC: séries

Exercice avec préparation 1

Soit $\alpha > 0$ et $\sum u_n$ une série convergente à termes strictement positifs. Pour tout $n \in \mathbb{N}^*$, on note :

$$R_n = \sum_{k=n+1}^{+\infty} u_k$$
 et, si $n \geqslant 2$, $v_n = \frac{u_n}{(R_{n-1})^{\alpha}}$

- 1. Question de cours : énoncer le théorème de comparaison pour les séries à termes positifs.
- 2. On supposera dans cette question que $u_n = \frac{1}{2^n}$.
 - a) Montrer que $\sum u_n$ converge et calculer R_n .
 - **b)** En déduire v_n , puis donner une condition sur α pour que $\sum v_n$ converge.

Désormais, on ne suppose plus que $u_n = \frac{1}{2^n}$ et on traite le cas général.

- 3. Exprimer v_n en fonction de R_n , R_{n-1} et α .
- 4. En prenant $\alpha = 1$,
 - a) Exprimer $\ln(1-v_n)$ en fonction de $\ln(R_n)$ et de $\ln(R_{n-1})$.
 - **b)** En déduire la nature de $\sum v_n$.
- **5.** On suppose : $\alpha > 1$.
 - a) Montrer qu'il existe $N \in \mathbb{N}^*$ tel que pour tout $n \geqslant N : R_{n-1}^{\alpha} \leqslant R_{n-1}$.
 - **b)** En déduire la nature de la série $\sum v_n$.
- 6. On suppose : $0 < \alpha < 1$.
 - a) Calculer $\int_{R_n}^{R_{n-1}} \frac{1}{t^{\alpha}} dt$.
 - **b)** En déduire la nature de $\sum v_n$.

Réponses de l'exercice avec préparation 1 :

- 1. Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs.
 - Si, pour tout $n \in \mathbb{N}$, $0 \le u_n \le v_n$, et si la série $\sum v_n$ converge, alors la série $\sum u_n$ converge.
 - Si $u_n = o(v_n)$ et si la série $\sum v_n$ converge, alors la série $\sum u_n$ converge.
 - Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors les séries $\sum u_n$ et $\sum v_n$ ont même nature.
- 2. a) La série $\sum u_n$ est une série géométrique de raison $\frac{1}{2} \in]-1,1[$ donc elle converge. Soit $n \in \mathbb{N}^*$.

$$R_n = \sum_{k=n+1}^{+\infty} u_k = \sum_{k=n+1}^{+\infty} \left(\frac{1}{2}\right)^k = \sum_{k=0}^{+\infty} \left(\frac{1}{2}\right)^{n+1+k} = \left(\frac{1}{2}\right)^{n+1} \sum_{k=0}^{+\infty} \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^{n+1} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2^n}$$

Finalement, on trouve : $R_n = u_n$.

b) Soit $n \ge 2$.

$$v_n = \frac{u_n}{u_{n-1}^{\alpha}} = \frac{\frac{1}{2^n}}{\left(\frac{1}{2^{n-1}}\right)^{\alpha}} = \frac{2^{n\alpha - \alpha}}{2^n} = 2^{-\alpha} \left(\frac{2^{\alpha}}{2}\right)^n = 2^{-\alpha} \left(\frac{1}{2^{1-\alpha}}\right)^n$$

La série $\sum v_n$ est une série géométrique (à constante multiplicative près) de raison $q = \frac{1}{2^{1-\alpha}} > 0$. On a

$$\frac{1}{2^{1-\alpha}} < 1 \iff 1 < 2^{1-\alpha}$$

$$\iff \ln(1) < (1-\alpha)\ln(2) \qquad (par stricte \ croissance \ de \ \ln \ sur \]0, +\infty[)$$

$$\iff 1-\alpha > 0$$

$$\iff \alpha < 1$$

La série $\sum v_n$ converge si et seulement si $\alpha < 1$.

3. Soit $n \ge 2$. On remarque que $u_n = R_{n-1} - R_n$.

On en déduit que :
$$v_n = \frac{R_{n-1} - R_n}{R_{n-1}^{\alpha}}$$
.

- 4. En prenant $\alpha = 1$,
 - a) Soit $n \ge 2$. On a

$$\ln(1 - v_n) = \ln\left(1 - \frac{R_{n-1} - R_n}{R_{n-1}}\right) = \ln\left(\frac{R_n}{R_{n-1}}\right) = \ln(R_n) - \ln(R_{n-1})$$

b) Soit $n \ge 2$. Par sommation télescopique :

$$\sum_{k=2}^{n} \ln(1 - v_k) = \sum_{k=2}^{n} (\ln(R_k) - \ln(R_{k-1})) = \ln(R_n) - \ln(R_1)$$

Puisque la série $\sum u_n$ converge, il vient : $\lim_{n \to +\infty} R_n = 0$. D'où : $\lim_{n \to +\infty} \ln(R_n) - \ln(R_1) = -\infty$.

Ainsi : $\lim_{n\to+\infty} \sum_{k=2}^{n} \ln(1-v_k) = -\infty$ et donc la série $\sum \ln(1-v_n)$ diverge.

On sépare ensuite deux cas.

- \times Si (v_n) ne converge pas vers 0, alors la série $\sum v_n$ diverge (grossièrement).
- \times Si $v_n \underset{n \to +\infty}{\longrightarrow} 0$, alors $\ln(1-v_n) \underset{n \to +\infty}{\sim} -v_n$ et donc les séries $\sum v_n$ et $\sum \ln(1-v_n)$ ont même nature par critère de comparaison par équivalence. On en déduit que la série $\sum v_n$ diverge.
- 5. On suppose : $\alpha > 1$.
 - a) On sait que $R_{n-1} \underset{n \to +\infty}{\longrightarrow} 0$, donc il existe un entier $N \in \mathbb{N}^*$ tel que, pour tout entier $n \ge N$, on a $0 < R_{n-1} < 1$. Par suite, pour tout entier $n \ge N$, on a $R_{n-1}^{\alpha} \le R_{n-1}$ (car $\alpha > 1$).
 - **b)** Pour tout entier $n \ge N$, on a:

$$v_n = \frac{u_n}{R_{n-1}^{\alpha}} \geqslant \frac{u_n}{R_{n-1}}$$

Or, la série $\sum \frac{u_n}{R_{n-1}}$ diverge d'après le cas $\alpha=1$ traité à la question précédente. Par critère de comparaison pour les séries à termes positifs, on en déduit que la série $\sum v_n$ converge.

- **6.** On suppose : $0 < \alpha < 1$.
 - a) Soit $n \in \mathbb{N}^*$.

$$\int_{R_n}^{R_{n-1}} \frac{1}{t^{\alpha}} dt = \int_{R_n}^{R_{n-1}} t^{-\alpha} dt$$

$$= \left[\frac{t^{-\alpha+1}}{-\alpha+1} \right]_{R_n}^{R_{n-1}}$$

$$= \frac{1}{1-\alpha} \left(R_{n-1}^{1-\alpha} - R_n^{1-\alpha} \right)$$

b) On pose $f: t \mapsto \frac{1}{t^{\alpha}}$. La fonction f est décroissante sur $]0, +\infty[$. Par croissance de l'intégrale, les bornes étant rangées dans l'ordre croissant :

$$v_n = \frac{R_{n-1} - R_n}{R_{n-1}^{\alpha}} \leqslant \int_{R_n}^{R_{n-1}} \frac{1}{t^{\alpha}} dt = \frac{1}{1 - \alpha} \left(R_{n-1}^{1 - \alpha} - R_n^{1 - \alpha} \right)$$

Or, puisque $1 - \alpha > 0$:

$$\sum_{k=2}^{n} \left(R_{k-1}^{1-\alpha} - R_k^{1-\alpha} \right) = R_1^{1-\alpha} - R_n^{1-\alpha} \underset{n \to +\infty}{\longrightarrow} R_1^{1-\alpha}$$

donc la série $\sum \left(R_{n-1}^{1-\alpha}-R_n^{1-\alpha}\right)$ converge. Par critère de comparaison pour les séries à termes positifs, on en déduit que la série $\sum v_n$ converge également.