Soit $n \in \mathbb{N}^*$ et soit $m \in [0, n-1]$. Une expérience est conduite pour étudier la mémoire des rats, dont voici le protocole :

- On place un rat devant n couloirs.
- Au bout de l'un d'eux se trouve sa nourriture préférée, tandis qu'au bout des autres, il n'y a rien.
- Le rat teste aléatoirement les couloirs jusqu'à-ce qu'il trouve la nourriture. A chaque fois que le rat teste un couloir, on dit que le rat fait un *trajet*, même si il avait déjà testé ce couloir précédemment.
- L'expérience s'arrête lorsque le rat trouve la nourriture pour la première fois.

On note R_n : « le rat trouve la nourriture en moins de n trajets » (au sens large).

Pour tout $k \in \mathbb{N}^*$, on note A_k : « le rat trouve la nourriture lors du k^e trajet ».

On note (H_m) l'hypothèse : le rat se souvient exactement des m derniers trajets mais pas de ceux d'avant.

1. Justifier que, pour tout $k \in \mathbb{N}^*$, $A_k = \overline{A_1} \cap \cdots \cap \overline{A_{k-1}} \cap A_k$. Autrement dit, les événements « le rat trouve la nourriture lors du k^e trajet » et « le rat trouve la nourriture pour la première fois lors du k^e trajet » coincïdent.

On se place dans le cas n = 3.

- 2. Calculer, pour tout $k \in \mathbb{N}^*$, $\mathbb{P}(A_k)$ puis en déduire $\mathbb{P}(R_n)$ dans chacun des cas suivants :
 - (a) sous l'hypothèse (H_0) (le rat n'a aucun souvenir des trajets précédents).
 - (b) sous l'hypothèse (H_1) (le rat se souvient uniquement du dernier trajet).
 - (c) sous l'hypothèse (H_2) (le rat se souvient exactement des deux derniers trajets).

On pourra présenter les résultats dans un tableau récapitulatif.

3. Les chercheurs possèdent trois rats. Le premier à une mémoire (H_0) , le deuxième une mémoire (H_1) et le dernier une mémoire (H_2) . Calculer $\mathbb{P}(R_n)$ en supposant que le rat est choisit au hasard parmi les trois.

On revient au cas général $(n \ge 1 \text{ et } m \in [0, n-1])$ et on suppose que l'hypothèse (H_m) est vérifiée.

- 4. Donner, en justifiant brièvement, la valeur de $\mathbb{P}(R_n)$ dans le cas où m=n-1.
- 5. On suppose dans cette question que $m \in [0, n-2]$.
 - (a) Soit $k \in \mathbb{N}^*$. Calculer $\mathbb{P}(A_k)$ en séparant les cas $1 \le k \le m+1$ et $m+2 \le k \le n$.
 - (b) En déduire $\mathbb{P}(R_n)$.
 - (c) Montrer que la formule obtenue reste valable pour m = n 1.
- 6. On fixe l'entier m. Montrer que $\lim_{n\to+\infty} \mathbb{P}(R_n) = 1 e^{-1}$. (On donne $1-e^{-1} \simeq 0,63$)

Des rats d'un autre genre.

7. Les chercheurs ont trouvé comment créer des X-rats[©], capables d'accroître leurs capacités de mémoire à l'infini en s'entraînant dans des labyrinthes toujours plus grand. Leur rat le plus performant, baptisé Gauss, à une mémoire de type (H_m) où $m = \lfloor \alpha n \rfloor$ avec $\alpha \in]0,1[$ $(\alpha \text{ est fixé}).$

On suppose que c'est le X-rat $^{\odot}$ Gauss qui participe à l'expérience dans cette question.

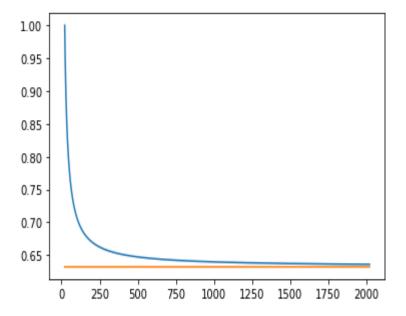
- (a) Montrer que $\lim_{n\to+\infty} \mathbb{P}(R_n) = 1 (1-\alpha)e^{-1}$.
- (b) En déduire la valeur minimale pour α si l'on souhaite que le X-rat[©] Gauss réussisse à trouver la nourriture en moins de n trajets plus de 9 fois sur 10 lorsque n est très grand.

Partie informatique.

8. Compléter le programme **Python** suivant pour qu'il trace les 2000 premiers termes de la suite $(\mathbb{P}(R_n))_{n\geq 21}$ sous l'hypothèse H_{20} .

```
import numpy as np
import matplotlib.pyplot as plt
A = [n for n in range(21,2022)]
C = [1-np.exp(-1) for n in A]
m = 20
U =
plt.plot(A,U)
plt.plot(A,C)
```

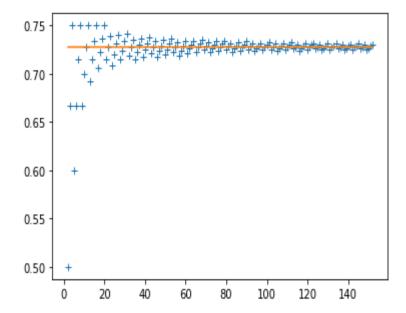
On obtient le tracé :



Quel résultat retrouve-t-on ainsi?

- 9. Ecrire une fonction en **Python**, nommée **PlusPetitReussite**, qui prend en argument un entier $n \ge 1$ et qui renvoie le plus petit entier m vérifiant : $\mathbb{P}(R_n) \ge \frac{9}{10}$ sous l'hypothèse (H_m) . Pour tout entier $n \ge 1$, on note u_n cet entier m minimal.
- 10. On affiche ci-dessous le tracé obtenu en utilisant le programme Python suivant :

```
import numpy as np
import matplotlib.pyplot as plt
A = [n for n in range(2,153)]
C = [1-np.exp(1)/10 for n in A]
U = [PlusPetitReussite(n)/n for n in A]
plt.plot(A,C)
plt.plot(A,U,"+")
```



Que conjecturez-vous comme équivalent de u_n ?