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DS4 (version A) - correction

La présentation, la lisibilité, l’orthographe, la qualité de la rédaction, la clarté et la précision des rai-
sonnements entreront pour une part importante dans l’appréciation des copies.
Les candidat·es sont invité·es à encadrer dans la mesure du possible les résultats de leurs calculs.
Aucun document n’est autorisé. L’utilisation de toute calculatrice et de tout matériel électro-
nique est interdite. Seule l’utilisation d’une règle graduée est autorisée.
Si au cours de l’épreuve, un candidat ou une candidate repère ce qui lui semble être une erreur d’énoncé,
il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu’il
sera amené à prendre.

On suppose, et c’est valable pour toute l’épreuve, que les librairies suivantes sont importées sous leurs
alias habituels :

• import numpy as np

• import numpy.linalg as al

• import numpy.random as rd

• import matplotlib.pyplot as plt
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Exercice 1 (EDHEC 2004)

On note E l’espace vectoriel des fonctions polynomiales réelles de degré inférieur ou égal à 2.
On note e0, e1, e2 les fonctions définies, pour tout réel x par :

e0(x) = 1, e1(x) = x et e2(x) = x2

et on rappelle que B = (e0, e1, e2) est une base de E.
Soit f l’application qui à toute fonction polynomiale P de E associe la fonction Q = f(P ), où Q est
la dérivée seconde de l’application qui à tout réel x associe (x2 − x)P (x).

1. a) Montrer que f est un endomorphisme de E.

Démonstration.

× Montrons que f(E) ⊂ E.
Soit P ∈ E.
P est un polynôme de degré inférieur ou égal à 2, i.e. il existe (a, b, c) ∈ R3 tels que, pour
tout x ∈ R, P (x) = ax2 + bx+ c. Donc, soit x ∈ R,

(x2 − x)P (x) = ax4 + bx3 + cx2 − ax3 − bx2 − cx = ax4 + (b− a)x3 + (c− b)x2 − cx

Donc x 7→ (x2 − x)P (x) est de degré au plus 4.
Q est la dérivée seconde de ce polynôme. On a donc

Q(x) = f(P )(x) = 2P (x) + 2(2x− 1)P ′(x) + (x2 − x)P ′′(x)

On remarque, comme P est de degré au plus 2,

× 2P est de degré au plus 2,

× P ′ est de degré au plus 1, donc 2(2X − 1)P ′ est de degré au plus 2,

× P ′′ est de degré au plus 0, donc (X2 −X)P ′′ est de degré au plus 2.

Donc f(P ) est de degré au plus 2.
D’où f est une application de E dans E.

× Montrons que f est une application linéaire.
Soit λ ∈ R et (R,S) ∈ E2. Montrons que f(λR+ S) = λf(R) + f(S).
Soit x ∈ R.

f(λR+ S)(x)
= 2(λR+ S)(x) + 2(2x− 1)(λR+ S)′(x) + (x2 − x)(λR+ S)′′(x)
= λ2R(x) + 2S(x) + λ2(2x− 1)R′(x) + 2(2x− 1)S′(x)

+λ(x2 − x)R′′(x) + (x2 − x)S′′(x)
(par linéarité de la
dérivation)

= λ(2R(x) + 2(2x− 1)R′(x) + (x2 − x)R′′(x))
+(2S(x) + 2(2x− 1)S′(x) + (x2 − x)S′′(x))

= λf(R)(x) + f(S)(x)

Donc f(λR+ S) = λf(R) + f(S).
D’où f est une application linéaire.

f est un endomorphisme de E.
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b) Déterminer f(e0), f(e1) et f(e2) en fonction de e0, e1 et e2.

Démonstration.
Soit x ∈ R.

(x2 − x)e0(x) = x2 − x, (x2 − x)e1(x) = x3 − x2 et (x2 − x)e2(x) = x4 − x3

Donc
f(e0)(x) = 2 = 2e0(x), f(e1)(x) = 6x− 2 = 6e1(x)− 2e0(x)

et
f(e2)(x) = 12x2 − 6x = 12e2(x)− 6e1(x)

D’où

f(e0) = 2e0, f(e1) = 6e1 − 2e0 et f(e2) = 12e2 − 6e1.

c) En déduire que la matrice de f dans la base B est A =

 2 −2 0
0 6 −6
0 0 12

 .

Démonstration.

D’après la question précédente, f(e0) = 2 · e0 + 0 · e1 + 0 · e2. Donc MatB(f(e0) =

2
0
0

.
f(e1) = −2 · e0 + 6 · e1 + 0 · e2. Donc MatB(f(e1) =

−2
6
0

.
f(e2) = 0 · e0 +−6 · e1 + 12 · e2. Donc MatB(f(e2) =

 0
−6
12

.

Finalement, la matrice de f dans la base B est A =

2 −2 0
0 6 −6
0 0 12

.

d) Montrer sans calcul que f est un automorphisme de E.

Démonstration.
A est une matrice représentative de f . Or cette matrice est triangulaire supérieure avec des
coefficients diagonaux non nuls. Elle est donc inversible. Donc f est bijectif.
On sait de plus d’après la question 1.a) que f est un endomorphisme de E. D’où

f est un automorphisme de E.
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2. a) Donner les valeurs propres de A, puis en déduire que A est diagonalisable.

Démonstration.
La matrice A est triangulaire supérieure. Donc ses valeurs propres sont ses coefficients diagonaux,
i.e. Sp(A) = {2, 6, 12}.
La matrice A possède 3 valeurs propres distinctes et A ∈M3(R), donc

A est diagonalisable.

b) Déterminer les sous-espaces propres de A.

Démonstration.

•

(A− 2I3)

xy
z

 =

0
0
0

⇔
0 −2 0

0 4 −6
0 0 10

xy
z

 =

0
0
0

⇔

− 2y = 0

4y − 6z = 0
10z = 0

De plus 
− 2y = 0

4y − 6z = 0
10z = 0

⇔
{
y = 0
z = 0

Donc

E2(A) = Vect

1
0
0


.

•

(A− 6I3)

xy
z

 =

0
0
0

⇔
−4 −2 0

0 0 −6
0 0 8

xy
z

 =

0
0
0

⇔

−4x − 2y = 0

− 6z = 0
8z = 0

De plus 
−4x − 2y = 0

− 6z = 0
8z = 0

⇔
{

2x+ y = 0
z = 0

Donc

E6(A) = Vect

 1
−2
0


.

•

(A− 12I3)

xy
z

 =

0
0
0

⇔
−10 −2 0

0 −6 −6
0 0 0

xy
z

 =

0
0
0

⇔ {
−10x − 2y = 0

− 6y − 6z = 0

De plus {
−10x − 2y = 0

− 6y − 6z = 0
⇔
{

5x+ y = 0
y + z = 0

Donc
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E12(A) = Vect

 1
−5
5


.

c) On compile le script Python suivant :

1 A = np.array([[2,-2,0],[0,6,-6],[0,0,12]])
2 print(al.matrix_rank(A-6*np.eye(3)))

Donner la valeur affichée dans la console Python et justifier à l’aide de la question précédente.

Démonstration. La console Python affiche la valeur 2. En effet, d’après le théorème du rang :

3 = dim(E6(A)) + rg(A− 6I)

d’où rg(A− 6I) = 3− dim(E6(A)). Or, d’après la question 2.b, la famille F6 =

 1
−2
0


 :

× engendre E6(A)

× est libre car constituée d’un unique vecteur non nul

Donc la famille F6 est une base de E6(A) et dim(E6(A)) = 1.

3. a) Justifier l’existence d’une matrice P inversible dont la première ligne ne contient que des « 1 »

telle que A = PDP−1, où D =

2 0 0
0 6 0
0 0 12

.
Démonstration.
La matrice A est diagonalisable. Donc il existe une matrice P inversible obtenue par concaténa-
tion des bases des sous-espaces propres de A, et une matrice D diagonale dont les coefficients
diagonaux sont les valeurs propres de A telles que A = PDP−1.
D’après la question 2b,

A = PDP−1 où P =

1 1 1
0 −2 −5
0 0 5

 est inversible et D =

2 0 0
0 6 0
0 0 12

.

On aurait aussi pu rédiger de la manière suivante :

On pose la matrice P =

1 1 1
0 −2 −5
0 0 5

. Cette matrice est triangulaire supérieure à coef-

ficients diagonaux non nuls. Elle est donc inversible. De plus P−1 =
1

10

10 5 3
0 −5 −5
0 0 2

.
On remarque que A = PDP−1.
À la lecture de l’énoncé, ce n’était cependant pas la rédaction à privilégier : on demande
seulement en question 4.a) de déterminer P−1. Il faut cependant bien donner P−1 ici
pour conclure, sinon vous risquez d’être accusé d’arnaque !

Commentaire
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b) Montrer que : ∀n ∈ N, An = PDnP−1.

Démonstration.
Montrons par récurrence que pour tout n ∈ N, P(n) est vraie où P(n) : An = PDnP−1.

• Initialisation : D’une part A0 = I3. D’autre part PD0P−1 = PI3P
−1 = PP−1 = I3. Donc

P(0) est vraie.

• Hérédité : Soit n ∈ N tel que P(n) soit vraie. Montrons que P(n+ 1) est vraie.

An+1 = A×An

= A× PDnP−1 par hypothèse de récurrence
= PDP−1 × PDnP−1 d’après la question 3.a)
= PDPP−1DnP−1

= PD ×DnP−1

= PDn+1P−1

Donc P(n+ 1) est vraie.

Le principe de récurrence nous assure que

pour tout n ∈ N, An = PDnP−1.

4. a) Déterminer la matrice P−1.

Démonstration.
On applique la méthode de Gauss-Jordan.1 1 1

0 −2 −5
0 0 5


∣∣∣∣∣∣
1 0 0

0 1 0
0 0 1


On effectue l’opération L1 ← 2L1 + L2. on obtient2 0 −3

0 −2 −5
0 0 5


∣∣∣∣∣∣
2 1 0

0 1 0
0 0 1



On effectue les opérations
{
L1 ← 5L1 + 3L3

L2 ← L2 + L3
. On obtient

10 0 0
0 −2 0
0 0 5


∣∣∣∣∣∣
10 5 3

0 1 1
0 0 1



On effectue les opérations


L1 ← 1

10L1

L2 ← −1
2L2

L3 ← 1
5L3

. On obtient

1 0 0
0 1 0
0 0 1


∣∣∣∣∣∣
1 1

2
3
10

0 −1
2 −1

2
0 0 1

5


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P−1 =
1

10

10 5 3
0 −5 −5
0 0 2

.

b) En déduire explicitement, en fonction de n, la matrice An.

Démonstration.
Soit n ∈ N.

An = PDnP−1 d’après la question 3.b)

=

1 1 1
0 −2 −5
0 0 5

2n 0 0
0 6n 0
0 0 12n

 1

10

10 5 3
0 −5 −5
0 0 2


=

1

10

1 1 1
0 −2 −5
0 0 2

10 · 2n 5 · 2n 3 · 2n
0 −5 · 6n −5 · 6n
0 0 2 · 12n


=

1

10

10 · 2n 5(2n − 6n) 3 · 2n − 5 · 6n + 2 · 12n

0 10 · 6n 10(6n − 12n)
0 0 10 · 12n



Pour tout n ∈ N, An =
1

10

10 · 2n 5(2n − 6n) 3 · 2n − 5 · 6n + 2 · 12n

0 10 · 6n 10(6n − 12n)
0 0 10 · 12n

.

c) On dit qu’une suite de matrices (Mn) tend vers la matriceM , lorsque n tend vers +∞, si chaque
coefficient de Mn tend vers le coefficient situé à la même place dans M .

On pose B =
1

12
A. Montrer que la suite (Bn) tend vers une matrice J vérifiant J2 = J .

Démonstration.
Soit n ∈ N.
Si B =

1

12
A, alors, par récurrence immédiate, Bn =

1

12n
An. Donc

Bn =
1

10

10 ·
(
1
6

)n
5(
(
1
6

)n − (12)n) 3 ·
(
1
6

)n − 5 ·
(
1
2

)n
+ 2 · 1

0 10 ·
(
1
2

)n
10(
(
1
2

)n − 1)

0 0 10 · 1


Or limn→+∞

1

6n
= 0 et limn→+∞

1

2n
= 0 car

∣∣∣∣16
∣∣∣∣ < 1 et

∣∣∣∣16
∣∣∣∣ < 1. Donc

lim
n→+∞

Bn =

0 0 1
5

0 0 −1
0 0 1

 = J

On remarque que J2 = J .

La suite (Bn)n∈N tend vers la matrice J =

0 0 1
5

0 0 −1
0 0 1

 qui vérifie J2 = J .
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Exercice 2 (ECRICOME 2014)

On considère la fonction f définie sur [0,+∞[ par :

f : x 7→


1 si x = 0

x

ln(1 + x)
si x ∈ ]0,+∞[

ainsi que la suite (un)n∈N définie par :

u0 = e et ∀n ∈ N, un+1 = f(un)

1. Déterminer le signe de f sur l’intervalle [0,+∞[. En déduire que, pour tout entier naturel n, un
existe.

Démonstration. Soit x ∈ [0,+∞[.

× Si x = 0, alors f(x) = 1 > 0.

× Si x > 0, alors 1 + x > 1 et par stricte croissance de ln sur ]0,+∞[, on a ln(1 + x) > ln(1) = 0,
d’où f(x) =

x

ln(1 + x)
> 0.

Finalement,

pour tout x > 0, f(x) > 0.

Montrons par récurrence : ∀n ∈ N, P (n)

où P (n) : « un existe et un > 0 ».
Initialisation : u0 = e > 0 donc u0 existe par définition. D’où P (0).
Hérédité : soit n ∈ N. Supposons P (n). Montrons P (n+ 1).
Par hypothèse de récurrence, un existe et un > 0. Donc un+1 = f(un) existe car f est définie sur
[0,+∞[. D’après ce qui précède, un+1 > 0. D’où P (n+ 1).
Par principe de récurrence : pour tout n ∈ N, un existe (et un > 0).

2. Écrire un programme en Python qui, pour une valeur N fournie par l’utilisateur, calcule et affiche
uN .

Démonstration.

1 import numpy as np
2 N = int(input('Entrez un nombre entier N : '))
3 u = np.e
4 for i in range(N):
5 u = u / np.log(1+u)
6 print(u)

3. Montrer que f est continue sur [0,+∞[.

Démonstration. Tout d’abord, sur ]0,+∞[, f = f1
f2

où

• f1 : x 7→ x est continue sur ]0,+∞[

• f2 : x 7→ ln(1 + x) est continue et ne s’annule pas sur ]0,+∞[
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donc f est continue sur ]0,+∞[.

De plus, on a ln(1 + x) ∼
x→0

x donc
x

ln(1 + x)
∼

x→0
1 donc lim

x→0

x

ln(1 + x)
= 1.

Autrement dit : lim
x→0+

f(x) = f(0). Conclusion :

la fonction f est continue sur [0,+∞[.

4. Établir que f est de classe C1 sur ]0,+∞[.

Démonstration. Le même raisonnement qu’à la question précédente (sur ]0,+∞[), en remplaçant
« continue » par « de classe C1 », prouve que f est de classe C1 sur ]0,+∞[.

5. Donner le développement limité à l’ordre 2 au voisinage de 0 de :

ln(1 + x)− x

1 + x

puis déterminer un équivalent de f ′(x) lorsque x tend vers 0.

Démonstration. On sait que

• ln(1 + x) = x− 1
2x

2 + o
x→0

(x2)

•
1

1 + x
= 1− x+ x2 + o

x→0
(x2)

Donc

ln(1 + x)− x

1 + x
= x− 1

2
x2 + o

x→0
(x2)− x

(
1− x+ x2 + o

x→0
(x2)

)
= x− 1

2
x2 + o

x→0
(x2)−

(
x− x2 + x3 + o

x→0
(x3)

)
=

1

2
x2 + o

x→0
(x2)

On en déduit que : ln(1 + x)− x

1 + x
∼

x→0

1
2x

2.

Soit x > 0.

f ′(x) =
ln(1 + x)− x

1 + x
(ln(1 + x))2

∼
x→0

1
2x

2

x2

∼
x→0

1

2

6. Prouver que f est de classe C1 sur [0,+∞[.

Démonstration. On sait déjà que f est de classe C1 sur ]0,+∞[.
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Soit x > 0.

f(x)− f(0)

x− 0
=

x

ln(1 + x)
− 1

x

=
x− ln(1 + x)

x ln(1 + x)

Or, ln(1 + x) = x− 1
2x

2 + o
x→0

(x2) donc x− ln(1 + x) ∼
x→0

1
2x

2. D’où

f(x)− f(0)

x− 0
∼

x→0

1
2x

2

x2
=

1

2

et donc lim
x→0

f(x)−f(0)
x−0 = 1

2 . Ceci prouve que f est dérivable en 0 et f ′(0) = 1
2 .

D’après la question précédente : lim
x→0+

f ′(x) = f ′(0). Donc f ′ est continue en 0. Conclusion :

la fonction f est de classe C1 sur [0,+∞[.

7. Établir :
∀x > e− 1, f(x) 6 x et (x+ 1) ln(x+ 1) > (x+ 1)

En déduire :
∀x > e− 1, f ′(x) > 0

Démonstration. Soit x > e− 1.
On a 1 + x > e
donc ln(1 + x) > 1 par croissance de ln sur ]0,+∞[

donc 1
ln(1+x) 6 1 par décroissance de x 7→ 1

x sur ]0,+∞[

donc x
ln(1+x) 6 x car x > 0. D’où

f(x) 6 x.

D’autre part, ln(1 + x) > 1 donc (x+ 1) ln(1 + x) > x+ 1 car x+ 1 > 0.
Or,

f ′(x) =
ln(1 + x)− x

1 + x
(ln(1 + x))2

=
(x+ 1) ln(1 + x)− x
(1 + x)(ln(1 + x))2

et

• (x+ 1) ln(1 + x)− x > 1 d’après ce qui précède

• (1 + x)(ln(1 + x))2 > 0

donc f ′(x) > 0 .

8. Démontrer :
∀n ∈ N, e− 1 6 un
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Démonstration. Montrons par récurrence : ∀n ∈ N, P (n)

où P (n) : « e− 1 6 un »
Initialisation : u0 = e et e− 1 6 e. D’où P (0).
Hérédité : soit n ∈ N. Supposons P (n) et montrons P (n+ 1).
Par hypothèse de récurrence : e− 1 6 un.
D’après la question 7, f est croissante sur [e− 1,+∞[, d’où f(e− 1) 6 f(un).
Or, un+1 = f(un) et f(e− 1) = e− 1. D’où P (n+ 1).
Par principe de récurrence, on a montré que, pour tout n ∈ N, e− 1 6 un.

9. Établir que la suite (un)n∈N converge et préciser la valeur de sa limite L.

Démonstration. La suite (un)n∈N est

• minorée par e− 1 d’après la question précédente.

• décroissante. En effet, d’après la question 7 : ∀x > e− 1, f(x) 6 x.
Soit n ∈ N. On applique cette inégalité à x = un > e− 1, on obtient un+1 = f(un) 6 un.

On en déduit, par théorème de convergence monotone, que la suite (un)n∈N converge vers un réel
L > e− 1.
De plus,

• un+1 −→
n→+∞

L par argument de suite extraite

• f(un) −→
n→+∞

f(L) par continuité de f en L (on a bien L > 0.)

Or, pour tout n ∈ N, un+1 = f(un), donc par unicité de la limite : L = f(L).
Soit x > 0.

x = f(x) ⇐⇒ x =
x

ln(1 + x)

⇐⇒ 1 =
1

ln(1 + x)
(car x 6= 0)

⇐⇒ ln(1 + x) = 1

⇐⇒ 1 + x = e
⇐⇒ x = e− 1

On a L = f(L) et L > 0 donc L = e− 1 .
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Exercice 3 (ECRICOME 2025)

1. a) Montrer que, pour tout entier naturel n, l’intégrale
∫ +∞

0
tne−tdt est convergente.

Démonstration.

• La fonction t 7→ tne−t est continue sur [0,+∞[ donc l’intégrale
∫ +∞

0
tne−tdt est impropre en

+∞.

• Pour tout t > 1, tne−t > 0 et
1

t2
> 0.

• lim
t→+∞

tn+2e−t = 0 par croissances comparées donc tne−t = o
t→+∞

(
1

t2

)
.

• De plus, l’intégrale impropre
∫ +∞

1

1

t2
dt converge par critère de Riemann.

On en déduit, par critère de négligeabilité pour les intégrales généralisées

de fonctions continues et positives, que l’intégrale
∫ +∞

0
tne−tdt est convergente.

On note pour tout entier naturel n, In =

∫ +∞

0
tne−tdt.

b) Calculer I0 et I1.

Démonstration.
Soit B > 0.

• On a : ∫ B

0
t0e−tdt =

∫ B

0
t0e−tdt =

[
−e−t

]B
0

= 1− e−B −→
B→+∞

1

D’où : I0 = 1.

• Procédons par intégration par parties (valide car les fonctions u et v sont de classe C1 sur
[0, B]) : ∣∣∣∣∣u′(t) = e−t u(t) = −e−t

v(t) = t v′(t) = 1

∫ B

0
t1e−tdt =

∫ B

0
te−tdt

=
[
−te−t

]B
0
−
∫ B

0
−e−tdt

= −Be−B −
[
e−t

]B
0

= −Be−B − e−B + 1 −→
B→+∞

1

D’où : I1 = 1.
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On peut retrouver ces résultats en utilisant le cours sur les variables aléatoires à densité.
Soit X ↪→ E (1). Alors, d’après le théorème de transfert :

I0 = E(X0) = E(1) = 1

I1 = E(X1) = E(X) = 1

Commentaire

2. Montrer que, pour tout réel x positif, l’intégrale
∫ +∞

0

e−t

1 + xt
dt est convergente.

Démonstration.
Soit x > 0.

• La fonction t 7→ e−t

1 + xt
est continue sur [0,+∞[ donc l’intégrale

∫ +∞

0

e−t

1 + xt
dt est impropre en

+∞.

• Pour tout t > 0, 1 + xt > 1 et donc, par décroissance de u 7→ 1

u
sur ]0,+∞[,

1

1 + xt
6 1. Puisque

e−t > 0, il suit que :

0 6
e−t

1 + xt
6 e−t

• L’intégrale
∫ +∞

0
e−tdt converge (il s’agit de I0).

On en déduit, par critère de comparaison pour les intégrales généralisées

de fonctions continues et positives, que l’intégrale
∫ +∞

0

e−t

1 + xt
dt est convergente.

On considère la fonction F définie sur [0,+∞[ par :

∀x ∈ [0,+∞[, F (x) =

∫ +∞

0

e−t

1 + xt
dt.

3. Expliciter la valeur de F (0).

Démonstration.

On a : F (0) =

∫ +∞

0
e−tdt = I0 = 1.

4. Soient x et y deux réels positifs tels que x 6 y.
Montrer que F (y) 6 F (x).
Que peut-on en déduire sur la fonction F ?

13
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Démonstration.
Soient x et y deux réels positifs tels que x 6 y. Soit t > 0.

x 6 y

donc xt 6 yt (car t > 0)
donc 1 + xt 6 1 + yt

donc
1

1 + xt
>

1

1 + yt
(par décroissance de u 7→ 1

u
sur ]0,+∞[)

donc
e−t

1 + xt
>

e−t

1 + yt
(car e−t > 0)

Ainsi, par croissance de l’intégrale, les bornes étant rangées dans l’ordre croissant :∫ +∞

0

e−t

1 + xt
dt >

∫ +∞

0

e−t

1 + yt
dt

On a bien : F (y) 6 F (x). Ainsi, la fonction F est décroissante sur [0,+∞[.

5. a) Pour tout réel x positif, calculer l’intégrale
∫ 1

0

1

1 + xt
dt.

On distinguera le cas x = 0 et le cas x > 0

Démonstration.
Soit x > 0. Deux cas se présentent.

• Si x = 0, alors : ∫ 1

0

1

1 + xt
dt =

∫ 1

0
1dt = 1

• Si x > 0, alors :∫ 1

0

1

1 + xt
dt =

1

x

∫ 1

0

x

1 + xt
dt =

1

x
[ ln(1 + xt) ]

1

0
=

ln(1 + x)

x

b) Montrer que, pour tout réel x positif :

0 6
∫ 1

0

e−t

1 + xt
dt 6

∫ 1

0

1

1 + xt
dt

Démonstration.
Soit x > 0. On a, pour tout t > 0 :

e−t 6 1

et donc :
e−t

1 + xt
6

1

1 + xt

Ainsi, par croissance de l’intégrale, les bornes étant rangées dans l’ordre croissant :∫ 1

0

e−t

1 + xt
dt 6

∫ 1

0

1

1 + xt
dt

14
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c) Montrer que, pour tout réel x strictement positif :

0 6
∫ +∞

1

e−t

1 + xt
dt 6

1

x

∫ +∞

1
e−tdt

Démonstration.
Soit x > 0. On a, pour tout t > 1 :

1 + xt > xt > x > 0

et donc :

0 6
e−t

1 + xt
6

e−t

x

Ainsi, par croissance de l’intégrale, les bornes étant rangées dans l’ordre croissant :

0 6
∫ +∞

1

e−t

1 + xt
dt 6

1

x

∫ +∞

1
e−tdt

d) À l’aide des questions précédentes, déterminer la limite de F (x) lorsque x tend vers +∞.

Démonstration.
Soit x > 0. D’après la relation de Chasles :

F (x) =

∫ 1

0

e−t

1 + xt
dt+

∫ +∞

1

e−t

1 + xt
dt

Ainsi, d’après les questions 5.a), 5.b) et 5.c) :

0 6 F (x) 6
ln(1 + x)

x
+

1

x

∫ +∞

1
e−tdt 6

ln(1 + x)

x
+

1

x
I0 =

ln(1 + x)

x
+

1

x

Par croissances comparées : lim
x→+∞

ln(1 + x)

x
= 0. De plus : lim

x→+∞

1

x
= 0.

Ainsi, par théorème d’encadrement : lim
x→+∞

F (x) = 0.

6. Soit x un réel positif. On admet que l’intégrale
∫ +∞

0

t2e−t

1 + xt
dt est convergente.

a) Montrer que :

F (x)−
∫ +∞

0
e−t(1− xt)dt = x2

∫ +∞

0

t2e−t

1 + xt
dt.

Démonstration.

Tout d’abord, les intégrales I0 et I1 étant convergentes, il suit que l’intégrale
∫ +∞

0
e−t(1−xt)dt

est convergente par linéarité de l’intégrale.
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Ensuite :

F (x)−
∫ +∞

0
e−t(1− xt)dt =

∫ +∞

0

e−t

1 + xt
dt−

∫ +∞

0
e−t(1− xt)dt

=

∫ +∞

0

(
e−t

1 + xt
− e−t(1− xt)

)
dt (par linéarité)

=

∫ +∞

0

(
1

1 + xt
− (1− xt)

)
e−tdt

=

∫ +∞

0

1− (1− xt)(1 + xt)

1 + xt
e−tdt

=

∫ +∞

0

1− (1− x2t2)
1 + xt

e−tdt

=

∫ +∞

0

x2t2

1 + xt
e−tdt

= x2
∫ +∞

0

t2

1 + xt
e−tdt

On a bien : F (x)−
∫ +∞

0
e−t(1− xt)dt = x2

∫ +∞

0

t2e−t

1 + xt
dt.

b) En déduire que :
0 6 F (x)− I0 + xI1 6 x2I2.

Démonstration.
Tout d’abord :

F (x)− I0 + xI1 = F (x)−
∫ +∞

0
e−tdt+ x

∫ +∞

0
te−tdt

= F (x)−
∫ +∞

0
e−t(1− xt)dt (par linéarité)

= x2
∫ +∞

0

t2e−t

1 + xt
dt

Ensuite, pour tout t > 0 :

0 6
t2e−t

1 + xt
6 t2e−t (car 1 + xt > 1)

et donc, par croissance de l’intégrale, les bornes étant rangées dans l’ordre croissant :

0 6
∫ +∞

0

t2e−t

1 + xt
dt 6

∫ +∞

0
t2e−tdt = I2

d’où (puisque x2 > 0) :

0 6 x2
∫ +∞

0

t2e−t

1 + xt
dt 6 x2I2

On a bien : 0 6 F (x)− I0 + xI1 6 x2I2.
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7. a) En déduire que la fonction F admet le développement limité à l’ordre 1 suivant au voisinage de
0 :

F (x) =
x→0

1− x+ o(x).

Démonstration.
Rappelons que I0 = I1 = 1. Ainsi, d’après la question 6.b), pour tout x > 0 :

0 6 F (x)− 1 + x 6 x2I2

et donc :
0 6

F (x)− 1 + x

x
6 xI2

De plus : lim
x→0

xI2 = 0. D’après le théorème d’encadrement : lim
x→0

F (x)− 1 + x

x
= 0.

Autrement dit : F (x)− 1 + x = o
x→0

(x).

On a bien : F (x) =
x→0

1− x+ o(x). Par unicité du développement limité,

il s’agit bien du développement limité à l’ordre 1 au voisinage de 0 de F .

b) Montrer que F est dérivable en 0 et déterminer F ′(0).

Démonstration.
Soit x > 0. D’après la question 3 , F (0) = 1. Ainsi :

F (x)− F (0)

x
=
F (x)− 1

x
=
−x+ o

x→0
(x)

x
= −1 + o

x→0
(1)

D’où :
lim
x→0

F (x)− F (0)

x
= −1

Ainsi, F est dérivable en 0 et F ′(0) = −1.

On peut aussi écrire que F (x)− 1 = −x+ o
x→0

(x) donc F (x)− 1 ∼
x→0
− x pour arriver

au même résultat.

Commentaire

8. On admet que la fonction F est continue sur [0,+∞[.
En tenant compte des propriétés démontrées dans cet exercice, tracer l’allure de la courbe repré-
sentative de F . On fera figurer sa tangente au point d’abscisse 0.

Démonstration.
D’après la question précédente, le graphe de F admet une tangente en 0, d’équation y = −x+ 1.
On sait de plus que la fonction F est décroissante sur [0,+∞[ et que F (x) −→

x→+∞
0. Ainsi, la courbe

admet une asymptote horizontale en +∞ (qui coïncide avec l’axe des abscisses).
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Exercice 4

Les deux parties sont indépendantes

Partie I (EML 2010)

Une gare dispose de deux guichets. Trois clients notés C1, C2, C3 arrivent en même temps. Les clients
C1 et C2 se font servir tandis que le client C3 attend puis effectue son opération dès que l’un des deux
guichets se libère.
On définit X1, X2, X3 les variables aléatoires égales à la durée d’opération des clients C1, C2, C3

respectivement. Ces durées sont mesurées en minutes et arrondies à l’unité supérieure ou égale. On
suppose que les variables X1, X2, X3 suivent la loi géométrique de paramètre p, p ∈ ]0, 1[ et qu’elles
sont indépendantes. On note q = 1− p.
On note A l’événement : « C3 termine en dernier son opération ».
Ainsi l’événement A est égal à l’événement : [min(X1, X2) +X3 > max(X1, X2)].
On se propose de calculer la probabilité de A.

1. Rappeler la loi de X1 ainsi que son espérance E(X1) et sa variance V(X1).
On définit la variable aléatoire ∆ = |X1 −X2|.

Démonstration.
D’après l’énoncé, X1 ↪→ G (p). Autrement dit :

× X1(Ω) = N∗.
× ∀k ∈ N∗, P([X1 = k]) = p qk−1.

Enfin : E(X1) =
1

p
et V(X1) =

q

p2
.

2. Calculer la probabilité P([∆ = 0]).

Démonstration.

• Tout d’abord : [∆ = 0] = [|X1 −X2| = 0] = [X1 −X2 = 0].
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• La famille ([X2 = k])k∈N∗ est un système complet d’événements.
Ainsi, d’après la formule des probabilités totales :

P([X1 −X2 = 0]) =
+∞∑
k=1

P([X2 = k] ∩ [X1 −X2 = 0])

=
+∞∑
k=1

P([X2 = k] ∩ [X1 = k])

=
+∞∑
k=1

P([X2 = k]) P([X1 = k])
(car X1 et X2

sont indépendantes)

=
+∞∑
k=1

p qk−1 p qk−1

= p2
+∞∑
k=1

(q2)k−1

= p2
+∞∑
k=0

(q2)k = p2
1

1− q2
(en reconnaissant la somme d’une série
géométrique de raison q2 ∈ ]− 1, 1[)

= p2
1

(1− q)(1 + q)
=

p

1 + q

P([X1 = X2]) =
p

1 + q
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3. Soit n un entier naturel non nul.

a) Justifier : P([X1 −X2 = n]) =
+∞∑
k=1

P([X2 = k])P([X1 = n+ k]).

Démonstration.
La famille ([X2 = k])k∈N∗ est un système complet d’événements.
Ainsi, par la formule des probabilités totales :

P([X1 −X2 = n]) =
+∞∑
k=1

P([X2 = k] ∩ [X1 −X2 = n])

=
+∞∑
k=1

P([X2 = k] ∩ [X1 = k + n])

=
+∞∑
k=1

P([X2 = k]) × P([X1 = k + n])
(car X1 et X2

sont indépendantes)

P([X1 −X2 = n]) =
+∞∑
k=1

P([X2 = k]) P([X1 = k + n])

b) En déduire : P([∆ = n]) =
2pqn

1 + q
.

Démonstration.
• Remarquons tout d’abord :

[∆ = n] = [ |X1 −X2| = n] = [X1 −X2 = n] ∪ [X1 −X2 = −n]

• Comme n 6= 0, les événements [X1 −X2 = n] et [X1 −X2 = −n] sont incompatibles.
Ainsi :

P([ |X1 −X2| = n]) = P([X1 −X2 = n]) + P([X1 −X2 = −n])

= P([X1 −X2 = n]) + P([X2 −X1 = n])

• Reprenons le calcul de la question précédente.

P([X1 −X2 = n]) =
+∞∑
k=1

P([X2 = k]) × P([X1 = k + n])

=
+∞∑
k=1

p qk−1 × p qk+n−1

= p2 qn
+∞∑
k=1

q2k−2

= p2 qn
+∞∑
k=1

(
q2
)k−1

= p2 qn
+∞∑
k=0

(
q2
)k (par décalage d’indice)

= p2 qn
1

1− q2
(en reconnaissant la somme d’une série
géométrique de raison q2 ∈ ]− 1, 1[)

= p2 qn
1

(1− q) (1 + q)
=

p qn

1 + q

∀n ∈ N∗, P
(

[X1 −X2 = n]
)

=
p qn

1 + q
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• On vient de démontrer que pour tout couple (U, V ) de v.a.r. indépedantes et de même loi
géométrique on a :

P([U − V = n]) =
p qn

1 + q

En choisissant U = X2 et V = X1, on obtient : P([X2 −X1 = n]) =
p qn

1 + q
.

• Et ainsi :
P([ ∆ = n]) = P([X1 −X2 = n]) + P([X2 −X1 = n])

= 2 P([X1 −X2 = n]) = 2
p qn

1 + q

On a bien : ∀n ∈ N∗, P([ ∆ = n]) = 2
p qn

1 + q
.

• Lorsque deux v.a.r. X1 et X2 ont même loi, on a évidemment, pour tout (a, b) ∈ R2 :

P
(

[a 6 X1 6 b]
)

= P
(

[a 6 X2 6 b]
)

Ce type de résultat est vérifié pour tout événement écrit avec une seule v.a.r. (on peut alors
remplacer X1 par X2).

• Lorsque l’on travaille sur une somme de v.a.r. , il faut faire attention. De manière générale :

P([X1 +X2 = n]) = P([X1 +X1 = n]) = P([ 2X1 = n])

On ne peut remplacer la v.a.r.X2 par la v.a.r.X1 déjà présente dans l’expression. Par contre,
si on dispose d’une autre v.a.r. X3 elle aussi de même loi que X1 et X2, on peut écrire :

P([X1 +X2 = n]) = P([X1 +X3 = n])

Cela peut être vu comme un renommage de la v.a.r. considéré.

• C’est cette idée qui nous a permis d’établir l’égalité :

P([X1 −X2 = n]) = P([X2 −X1 = n])

Il était aussi possible d’effectuer le calcul de P([X2 −X1 = n]) en mettant en place de nou-
veau la rédaction à l’aide de la formule des probabilités totales.
La famille ([X1 = k])k∈N∗ est un système complet d’événements.
Ainsi, par la formule des probabilités totales :

P([X2 −X1 = n]) =
+∞∑
k=1

P([X1 = k] ∩ [X2 −X1 = n])

=
+∞∑
k=1

P([X1 = k] ∩ [X2 = k + n])

=
+∞∑
k=1

P([X1 = k]) × P([X2 = k + n])
(car X1 et X2

sont indépendantes)

=
+∞∑
k=1

p qk−1 × p qk+n−1 =
p qn

1 + q

Commentaire
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4. a) Montrer que ∆ admet une espérance E(∆) et la calculer.

Démonstration.
• Tout d’abord : ∆ = |X1 −X2| > 0.

Les v.a.r. X1 et X2 étant à valeurs entières, ∆(Ω) ⊂ N.

• La v.a.r. ∆ admet une espérance si et seulement si la série
∑

n P
(

[∆ = n]
)
est absolument

convergente. Cette série étant à termes positifs, cela revient à démontrer qu’elle est convergente.
• Soit N ∈ N.

N∑
k=0

k P
(

[∆ = k]
)

=
N∑
k=1

k P
(

[∆ = k]
)

=
N∑
k=1

k P
(

[∆ = k]
)

=
N∑
k=1

k
2 p qk

1 + q

(d’après la question
précédente et car k > 1)

= 2
p q

1 + q

N∑
k=1

k qk−1 −→
N→+∞

2
p q

1 + q

1

(1− q)2

La limite est obtenue en reconnaissant la somme partielle d’ordre N d’une série géométrique
dérivée première de raison q ∈ ]− 1, 1[.
On en déduit que ∆ admet une espérance.

De plus : E(∆) =
2 q

(1 + q)(1− q)
.

b) Montrer : E((X1−X2)
2) = 2V(X1). En déduire que ∆ admet une variance V(∆) et la calculer.

Démonstration.
• Tout d’abord :

(X1 −X2)
2 = X1

2 − 2X1X2 +X2
2

La v.a.r. (X1 −X2)
2 admet une espérance car elle est la combinaison linéaire de v.a.r. qui en

admettent une. Plus précisément :
× X1

2 (resp. X2
2) admet une espérance car X1 suit une loi géométrique et admet donc un

moment d’ordre 2.
× X1X2 admet une espérance car X1 et X2 admettent toutes les deux un moment d’ordre 2.

La v.a.r. (X1 −X2)
2 admet une espérance.

• De plus :

E
(
(X1 −X2)

2
)

= E
(
X1

2 − 2X1X2 +X2
2
)

= E
(
X1

2
)
− 2E

(
X1X2

)
+ E

(
X2

2
)

(par linéarité de l’espérance)

= E
(
X1

2
)
− 2E

(
X1

)
E
(
X2

)
+ E

(
X2

2
) (car les v.a.r. X1 et X2

sont indépendantes)

= E
(
X1

2
)
− 2E

(
X1

)
E
(
X1

)
+ E

(
X1

2
) (les v.a.r. X1 et X2 ont même loi donc

E(X1) = E(X2) et E(X2
1 ) = E(X2

2 ))

= 2
(
E
(
X1

2
)
− E

(
X1

)2)
= 2V(X1)

E
(
(X1 −X2)

2
)

= 2V(X1)
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On pouvait aussi faire ce calcul de la façon ci-dessous.
• Tout d’abord, par linéarité de l’espérance :

E(X1 −X2) = E(X1)− E(X2) = 0

car X1 et X2 ont même loi.

• Ainsi :

E
(
(X1 −X2)

2
)

= V(X1 −X2) + (E(X1 −X2))
2 (par formule de

Koenig-Huygens)

= V(X1) + V(−X2)
(par indépendance de X1 et
X2)

= V(X1) + (−1)2V(X2)

= 2V(X1) (car X1 et X2 ont même loi)

Commentaire

• Remarquons alors : ∆2 = |X2 −X1|2 = (X2 −X1)
2.

On en conclut, d’après le point précédent, que la v.a.r. ∆ admet un moment d’ordre 2.
De plus :

V(∆) = E
(
∆2
)
−
(
E(∆)

)2 (par la formule de Kœnig-Huygens)

= 2V(X1)−
(

2 q

(1 + q) (1− q)

)2

= 2
q

p2
− 4 q2

(1 + q)2 (1− q)2
(car X1 ↪→ G (p))

=
2 q

p2

(
1− 2 q

(1 + q)2

)

=
2 q

p2
(1 + q)2 − 2 q

(1 + q)2
=

2

p2
(1 + 2 q + q2)− 2 q

(1 + q)2

V(∆) = 2
q (1 + q2)

p2 (1 + q)2
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5. Montrer que l’événement A est égal à l’événement [X3 > ∆].

Démonstration.

• Remarquons tout d’abord :

A = [min(X1, X2) +X3 > max(X1, X2)] = [X3 > max(X1, X2)−min(X1, X2)]

• Démontrons alors : ∆ = max(X1, X2)−min(X1, X2).
Soit ω ∈ Ω.

∆(ω) = |X2(ω)−X1(ω)|

=

{
X2(ω)−X1(ω) si X2(ω) > X1(ω)

X1(ω)−X2(ω) si X2(ω) < X1(ω)

= max
(
X1(ω), X2(ω)

)
−min

(
X1(ω), X2(ω)

)
=

(
max(X1, X2)−min(X1, X2)

)
(ω)

On a donc démontré :

∀ω ∈ Ω, ∆(ω) =
(

max(X1, X2)−min(X1, X2)
)
(ω)

Ainsi : ∆ = max(X1, X2)−min(X1, X2).

Et : A = [X3 > max(X1, X2)−min(X1, X2)] = [X3 > ∆].
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• On rappelle qu’une v.a.r. X est une application de Ω dans R. Ainsi, démontrer l’égalité de
deux v.a.r. (X = Y ) c’est démontrer que ces deux applications sont égales en tout point.
Plus précisément :

X = Y ⇔ ∀ω ∈ Ω, X(ω) = Y (ω)

Au passage :

× lorsque l’on note X = 5, cela signifie que la v.a.r. X est la v.a.r. constante égale à 5 (la
propriété : ∀ω ∈ Ω, X(ω) = 5 est vérifiée).

× lorsqu’on écrit « la v.a.r. X prend la valeur 5 si . . . » signifie qu’il existe (au moins) un
tirage ω ∈ Ω pour lequel X(ω) = 5.

Il existe malheureusement des énoncés dans lesquels ces deux expressions sont confondues. Ce
ne devrait pas être le cas : il n’y a pas lieu de confondre les symboles ∀ et ∃.

• On trouvera dans certains corrigés une disjonction de cas du type :

× Si X1 > X2 : alors max(X1, X2) = X1 et min(X1, X2) = X2 . . .

× Si X1 6 X2 : alors max(X1, X2) = X2 et min(X1, X2) = X1 . . .

Cette disjonction de cas n’a pas de sens.
Pour comprendre pourquoi ce n’est pas le cas, il faut avoir bien saisi la différence entre la
relation d’ordre opérant sur les réels et celle opérant sur les applications.

× Lorsque a et b sont des réels, on a :

a 6 b OU a > b

On dit que la relation d’ordre 6 définie sur les réels est une relation d’ordre totale : on peut
toujours comparer deux réels.

× La relation d’ordre sur les v.a.r. est elle aussi notée 6 et est définie par :

X1 6 X2 ⇔ ∀ω ∈ Ω, X1(ω) 6 X2(ω)

Cette relation d’ordre n’est pas totale. Autrement dit, il existe des v.a.r. X1 et X2 qui ne
sont pas comparables par la relation 6. Plus précisément, dès qu’il existe deux tirages ω1 ∈ Ω
et ω2 ∈ Ω tels que :

X1(ω1) 6 X2(ω1) et X1(ω2) > X2(ω2)

alors aucune des relations : X1 6 X2 et X1 > X2 n’est vérifiée puisque chacune de ces deux
inégalités définie une propriété qui doit être vérifiée pour tout ω.

La relation d’ordre définie sur les v.a.r. est dite partielle (on ne peut pas comparer tous les
v.a.r. ). La disjonction de cas présentée plus haut fait l’hypothèse forte que l’on peut comparer
les v.a.r. X1 et X2. Cette hypothèse n’est pas raisonnable et une telle disjonction n’a donc pas
lieu d’être.

Commentaire
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6. a) En déduire : P(A) =
+∞∑
k=0

P([∆ = k])P([X3 > k]).

Démonstration.
La famille ([∆ = k])k∈N est un système complet d’événements.
Ainsi, par la formule des probabilités totales :

P([X3 > ∆]) =
+∞∑
k=0

P([∆ = k] ∩ [X3 > ∆])

=
+∞∑
k=0

P([∆ = k] ∩ [X3 > k])

=
+∞∑
k=0

P([∆ = k]) × P([X3 > k])
(car ∆ et X3 sont
indépendantes)

L’indépendance de X3 et ∆ est une conséquence du lemme des coalitions : comme X1, X2 et X3

sont indépendantes, les v.a.r. |X2 −X1| et X3 sont indépendantes.

P([X3 > ∆]) =
+∞∑
k=0

P([∆ = k]) × P([X3 > k])

b) Exprimer P(A) à l’aide de p et q.

Démonstration.
• D’après la question précédente :

P([X3 > ∆]) =
+∞∑
k=0

P([∆ = k]) × P([X3 > k])

• Or :

P([∆ = 0]) × P([X3 > 0]) = P([∆ = 0]) × 1
(car [X3 > 0] = Ω
puisque X3(Ω) = N∗)

=
p

1 + q
(d’après la question 2.)

• Et, pour tout k ∈ N : P([X3 > k]) = qk.

• On utilise ici ce résultat sans donner la démonstration car elle n’est pas exigée
par l’énoncé (ce qui arrive parfois).

• Il faut savoir démontrer cette propriété.
Pour ce faire, démontrons tout d’abord :

P([X > k]) = 1− P
(

[X > k]
)

= 1− P([X 6 k])

Par ailleurs : [X 6 k] =
k⋃

i=1
[X = i]. On en déduit :

P([X 6 k]) = P
(

k⋃
i=1

[X = i]

)
=

k∑
i=1

P ([X = i]) (par incompatibilité)

=
k∑

i=1
p qi−1 = p

k−1∑
i=0

qi = p
1− qk

1− q
= 1− qk

Enfin : P([X > k]) = 1− P([X 6 k]) = 1− (1− qk) = qk.

Commentaire
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• On en conclut :

P([X3 > ∆]) =
+∞∑
k=0

P([∆ = k]) × P([X3 > k])

= P([∆ = 0]) × P([X3 > 0]) +
+∞∑
k=1

P([∆ = k]) × P([X3 > k])

=
p

1 + q
+

+∞∑
k=1

2 p qk

1 + q
× qk

=
p

1 + q
+ 2

p

1 + q

+∞∑
k=1

q2k

=
p

1 + q
+ 2

p

1 + q

(
+∞∑
k=0

(q2)k − 1

)

=
p

1 + q
+ 2

p

1 + q

(
1

1− q2
− 1

)
(en reconnaissant la somme d’une série
géométrique de raison q2 ∈ ]− 1, 1[)

=
p

1 + q

(
1 + 2

1 − (1 − q2)
1− q2

)

=
p

1 + q

1− q2 + 2q2

1− q2

=
p

1 + q

1 + q2

1− q2
=

1− q
1 + q

1 + q2

(1− q)(1 + q)
=

1 + q2

(1 + q)2

Ainsi : P
(

[X3 > ∆]
)

=
1 + q2

(1 + q)2
.

Partie II (EDHEC 1999)

Soit n ∈ N∗. Soient X, Y et Z trois variables aléatoires mutuellement indépendantes et définies sur le
même espace probabilisé (Ω,A ,P). On suppose que X, Y et Z suivent toutes la loi U(J1, nK).

7. a) Montrer que, pour tout k ∈ J2, n+ 1K, P([X + Y = k]) =
k − 1

n2
.

Démonstration.
Soit k ∈ J2, n+ 1K. D’après la formule des probabilités totales avec le système complet d’événe-
ments ([X = i])i∈J1,nK :

P([X + Y = k]) =
n∑

i=1
P([X + Y = k] ∩ [X = i])

=
n∑

i=1
P([Y = k − i] ∩ [X = i])

=
n∑

i=1
P([Y = k − i])P([X = i]) (par indépendance)

=
k−1∑
i=1

P([Y = k − i])P([X = i])
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En effet :{
1 6 k − i 6 n

1 6 i 6 n
⇐⇒

{
k − n 6 i 6 k − 1

1 6 i 6 n

⇐⇒ 1 6 i 6 k − 1 (car k − n 6 1, k − 1 6 n et 1 6 k − 1)

D’où : P([X + Y = k]) =
k−1∑
i=1

1

n
× 1

n
=
k − 1

n2
.

b) Montrer que, pour tout k ∈ Jn+ 2, 2nK, P([X + Y = k]) =
2n− k + 1

n2
.

Démonstration.
Soit k ∈ Jn + 2, 2nK. D’après la formule des probabilités totales avec le système complet d’évé-
nements ([X = i])i∈J1,nK :

P([X + Y = k]) =
n∑

i=1
P([X + Y = k] ∩ [X = i])

=
n∑

i=1
P([Y = k − i] ∩ [X = i])

=
n∑

i=1
P([Y = k − i])P([X = i]) (par indépendance)

=
n∑

i=k−n
P([Y = k − i])P([X = i])

En effet :{
1 6 k − i 6 n

1 6 i 6 n
⇐⇒

{
k − n 6 i 6 k − 1

1 6 i 6 n

⇐⇒ k − n 6 i 6 n (car k − n > 2, k − 1 > n+ 1 et k − n 6 n)

D’où : P([X + Y = k]) =
n∑

i=k−n

1

n
× 1

n
=
n− (k − n) + 1

n2
=

2n− k + 1

n2
.

8. En déduire que :

P([X + Y = Z]) =
n− 1

n2

Démonstration.
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D’après la formule des probabilités totales avec le système complet d’événements ([Z = k])k∈J1,nK :

P([X + Y = Z]) =
n∑

k=1

P([X + Y = Z] ∩ [Z = k])

=
n∑

k=1

P([X + Y = k] ∩ [Z = k])

=
n∑

k=1

P([X + Y = k])P([Z = k])
(Z et X + Y sont indépendantes
d’après le lemme des coalitions)

=
1

n

n∑
k=1

P([X + Y = k])

=
1

n

n∑
k=2

P([X + Y = k]) (car [X + Y = 1] = ∅)

=
1

n

n∑
k=2

k − 1

n2
(d’après la question 1.a))

=
1

n3

n−1∑
k=1

k

=
1

n3
× (n− 1)n

2

=
n− 1

2n2

On a bien : P([X + Y = Z]) =
n− 1

2n2
.

9. a) Montrer que la variable aléatoire T = n+ 1− Z suit la loi U(J1, nK).

Démonstration.

• Tout d’abord, on a bien : T (Ω) = J1, nK.
En effet, T prend la valeur 1 lorsque Z prend la valeur n et T prend la valeur n lorsque Z
prend la valeur 1.

• Soit k ∈ J1, nK.

P([T = k]) = P([n+ 1− Z = k])

= P([Z = n+ 1− k])

=
1

n
(car n+ 1− k ∈ J1, nK)

On a bien : T ↪→ U(J1, nK).

b) Justifier que T est indépendante de X et de Y .

Démonstration.
Question mal posée, on la fait directement dans la question suivante.

c) En déduire la valeur de P([X + Y + Z = n+ 1]).
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Démonstration.
On remarque que :

P([X + Y + Z = n+ 1]) = P([X + Y = n+ 1− Z]) = P([X + Y = T ])

De plus, d’après le lemme des coalitions, les variables aléatoires T et X+Y sont indépendantes.
On peut alors faire le même calcul qu’en question 2 .

D’où : P([X + Y + Z = n+ 1]) =
n− 1

2n2
.
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