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24 janvier 2026

Mathématiques

DS5 correction (version A)

Probléme 1 (sujet maison)

Partie I : Etude d’une matrice A

2 =2 2
On considére la matrice carrée A = ( 1 1 2 ) .

1. a)

b)

-2 0 =3

On exécute le code Python suivant :

import numpy as np

import numpy.linalg as al

A = np.array([[2,-2,2],[1,1,2],[-2,0,-3]1)
print(al.matrix_power(A,3))

[ " I S

et on obtient l'affichage :

1 [[ 2 -2 2]
2 [ 1 1 2]
3 [-2 0 -3]11

Traduire ce résultat par une égalité entre deux matrices.

Démonstration. D’aprés I'affichage Python : . O

En déduire les valeurs propres possibles de A.

Démonstration. D’aprés la question précédente, le polynéme P(X) = X3 — X est un polynéme
annulateur de A. Or,
PX)=X(X*-1)=X(X-1)(X+1)

On en déduit que
Sp(A) C {racines de P(X)} ={-1,0,1}

Ainsi, |les valeurs propres possibles de A sont —1, 0 et 1 ‘ O
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2. a) Déterminer Sp(A) et une base de chacun des sous-espaces propres de A.

T
Démonstration. Soit U = (y) € M31(R).

z

3 —2y+22=0
r+2y+22=0

—2x —2z=0

3x —2y+22=0

T+2y+22=0

z + 2=0 L3+ —1Ls

3z —2y+2z=0

<:>{ 8y+42=0 L3 +— 3Ly — 1,4
2y+ z2=0 Ly <+—3Ls— 1

3x —2y+22=0

{ 2+ z=0

3x — 2y = 22

{ 20 = —z

3z = -3z L1 +— L1+ Lo

{ 20 = —z

{ﬂc =—z

On en déduit que

2
E_1(A) # {04, )} donc —1 est valeur propre de A. De plus, la famille 71 = ( ( 1 ) > :

— engendre E_;(A)

— est libre car constituée d’un unique vecteur non nul
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donc | F_; est une base de E_;(A) ‘

U € Ey(A) <= AU =04, ,(»)

2 -2 2 z 0
<~ 1 1 2 ¥yl = (0)
-2 0 -3 z 0
20 =2y +22=0
= T+ y+22=0
—2x —32=0
r—y+ z2=0
= z+y+22=0
—2z —32=0
r— y+z=0
g 2y+z:0 Lo+—Ly— 14
—2y—2=0 L3y <+— L3+ 21,
T— Yy+z=
<~
24z =
T— Yy=—z
<~
2y = —z
2z = -3z L1%2L1+L2
<~
2 = —z
x ——%z
<~ 1
Y= —3%

On en déduit que

3
Eo(A) # {04, ,(r)} donc 0 est valeur propre de A. De plus, la famille 7y = ( ( 1 ) ) :

— engendre Ey(A)
— est libre car constituée d’un unique vecteur non nul

donc ‘.7-"0 est une base de Ey(A) ‘
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UEEl(A) s (A—I)UZOJ//:SJ(R

)
1 -2 2\ [z 0
<:>102 yl=1{0o0
Z 0

r—2y+22=0
= +22=0
—42z=0
r—2y+22=0
<~
+22=0
x—2y+22—0
<~
=0 L3<—L3—L1
<~

On en déduit que

El(A):{(;) € M1(R)|x=—-22z et yzO}
:{ ((?z) e//g,l(R)\zeR}
< -2
= Vect (0))
1

-2
E1(A) # {04, ,(r)} donc 1 est valeur propre de A. De plus, la famille 7 = ( ( 0 ) ) :
1

— engendre E;(A)
— est libre car constituée d’un unique vecteur non nul

donc ‘]-"1 est une base de F1(A) ‘

Les valeurs propres possibles de A sont —1,0,1 et on a vérifié que chacune d’elles est une valeur
propre de A. Donc

Sp(4) = {-1,0,1}

O

b) Démontrer qu'il existe une matrice P € .#3(R) inversible, dont la premiére ligne est (2 3 —2),
et une matrice D € .#5(R) diagonale, dont les coefficients diagonaux sont dans 1’ordre croissant,
qui vérifient A = PDP~!. On explicitera les matrices P et D.

Démonstration. La matrice A est carrée d’ordre 3 et admet trois valeurs propres distinctes donc
A est diagonalisable. Ainsi, il existe

« une matrice P € .#5(R) inversible, obtenue en concaténant les bases des sous-espaces propres
de A
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« une matrice D € .#3(R) diagonale, dont les coefficients diagonaux sont les valeurs propres de

A
telles que A = PDP~!.
2 3 =2 -1 0 0
On pose alors P = | 1 1 0 |JetD=10 0 0].Parlaformule de changement de
-2 =2 1 0 0 1
base, on a bien A = PDP~L. O

Partie II : Exponentielle d’une matrice carrée

Si (an), (bn), (cn), (dn), (€n), (fn),(gn), (hn), (in) désignent neuf suites convergentes, de limites res-
pectives a,b,c,d, e, f,g,h,i, et si (My,)nen est une suite de matrices de .#3(R) définie par

an bp ¢y
Vn € N, Mn — dn €n fn )

on dit que la suite de matrices (M, )nen admet une limite coefficient par coefficient, et on le note

a b c a b c

lm M,=1[|d e f ou M, — |d e f
n—+o0 . n—+00 .
g h i g h 1

Si M € .#5(R), on pose, pour tout entier naturel n,

n
Lok
Su(M)=>" G M* € M3(R).
k=0
Lorsque (S, (M))pen admet une limite coefficient par coefficient, on note e cette limite.

3. Deux résultats théoriques. On utilisera les notations du préambule de la partie II pour les preuves.

a) Soit M € #5(R) et soit (ay,) une suite réelle convergente, de limite £. Montrer que la suite de
matrices (ay, M) admet une limite coefficient par coefficient et que

lim a,M ={M

n—-4o00

a b c
Démonstration. Soit M = [d e f| € .#5(R). Soit n € N.
g h 1
a b c
apnM =a, |d e f
g h i
ana  apb  opc fa 0¢b fLc a b c
=|apd ane anf| — |4d fle Lf)| = d e f|=IM
ang aph Qg e bg th Vi g h i
O
b) Soient (M,) et (M]) deux suites de matrices de .#5(R) qui admettent chacune une limite
coefficient par coefficient. On note lim M, = M et lim M) = M’. Montrer que les suites
n—-400 n—-+o0o
de matrices (M, + M]) et (M, M],) admettent chacune une limite coefficient par coefficient et
que
lim (M, +M.)=M+M et lim (M,M) = MM
n—-+00 n—-+00




E2A

24 janvier 2026
Mathématiques

Démonstration. Soit n € N.

an b, cn a
M, + M, = (dn en fu |l +1|d, e
gn hn i 9n h‘;l, ip

an+a, by+b, cptc,

(dn +d, en+el, fot+ [l

gn+ 9, hn+h, in,+i],

at+d b+bd c+/c
— |d+d e+e fH+f|=M+M

e \g+ g hth itd

gn hn in gn hl i,
ana,, + bpd), + cngl,  anbl, + bnel, + cuhl,  ancl, + bufl + cpil,
dnal, + end), + fngl, dnbl, + enel, + fuhl,  dncl, +enfl + fnil,
Iny, + hnd;, + ingy,  Gnbl, + hney, +inhy,  gncl, + hnfy, + inidy,
ad' +bd +cqg  ab +be +ch'  ad +bf + i’
— | dd +ed + fg db +ee + fH dd +ef' + fi' | = MM’
n—r+o0 ’ A, / N / Y
ga' + hd +1ig" gt + he' +ih" g +hf + it

an bp cn\ [a, b,
MnM;z =|dn en fn dy e fn
-/

Les candidat-es devront référer précisément a ces questions lorsque ces résultats seront utilisés.

a 0 0 e 0 0
4. Montrer que,si D= |0 b 0], alors e? existe et vaut e? = [ 0 e® 0
0 0 ¢ 0 0 e

Ainsi, on a montré que l’exponentielle d’une matrice diagonale est une matrice diagonale.
Démonstration. Soit k € N. La matrice D étant diagonale, on a

0

0

k

@)
@)
o)
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Soit n € N.

en reconnaissant des sommes partielles de séries exponentielles. Ainsi,

Su(D) = 3 D
k=0 R-
01 ak 0
=0\ 0 cF
n %ak 0 0
=> |0 g 0
k=0 0 O HC
> %ak 0
k=0 "
= 0 > bt
k=0
0 0
e 0 0
0 ¢ 0
n—-+oo 0 0 ec

el

existe et el =

ea

0

eb

0

0
0
eC

5. Dans cette question uniquement, la matrice M est donnée par M =

a) Calculer M? et M3. En déduire la matrice M* pour tout entier naturel k.

Démonstration. On a

et

Pour tout k > 3, M* = M3MF+F—3 =

M? =

011 0

0 0 1 0

0 00 0

0 0 1 0

0 00 0

0 00 0
Ou///S(R)Mk_?)

@)

—_

o O

S = =

1
1
0
0

o O O
o O O

S O =

o O O

5(R)- Finalement,
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100
01 0 sik=0
0 0 1
01 1
Pour tout k € N, M* = 001 sih=1
0 00
0 0 1
0 0O sik=2
0 0O
\04//[3@@) sik >3

O

b) Donner, pour tout entier n supérieur ou égal a 2, 'expression de S, (M ). En déduire 'existence

et Pexpression de la matrice eM.

Démonstration. Soit n € N tel que n > 2.

no1
Su(M) = 3 Lt
k=0
2 1 i n 1 i
=> =M"+> —M par Chasles, car n > 2
k=0 k! j=3 k!
2 1 k k .
:kZ:oHM car M* =0 z,m®) si k >3
1 00 01 1 1 0 01
=0 1 0J+]0 0 1 +§ 0 00
0 01 0 00 0 00
3
11 3
=10 1 1
0 0 1

Ainsi, la suite (S, (M)) est constante a partir du rang 2. On en déduit que
113
Sp(M) — [0 1 1
n—+o00 00 1

donc

1 1
eM existeet eM = [0 1
0 0

= =W

6. Dans cette question uniquement, la matrice M est donnée par M =

[ T —Y
—_ = =
—_ = =

a) Calculer M? et M3 en fonction de M.
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Démonstration. On a

11 1 1 11 3 3 3
M*=(1 1 1)(1 1 1|=|3 3 3|=3M
11 1 1 11 3 3 3
et
M3 = M*M = (3M)M = 3M?* = 3(3M) = 3°M
O
b) Soit k € N*. Conjecturer une formule simple pour I’expression de M* puis la démontrer par
récurrence.
Démonstration. D’aprés la question précédente, on conjecture que M* = 3510 pour tout
k € N*.

Montrons par récurrence : Vk € N*, P(k)

ott P(k) : « MF =310 ».

Initialisation :

D’une part, M! = M. D’autre part, 3'"*M = 3°M = M. D’ou P(1).
Heérédité :

Soit k € N*. On suppose P(k). Montrons P(k + 1).

M = MMF
=M (3k_1M ) par hypothése de récurrence
— gk=1ps2
= 3*1(3M) cf la question 6.a)
=3"M
D’ou P(k +1).
Par principe de récurrence, on a montré que | pour tout k € N*, M* = 35=1pf |, O

¢) Soit n € N. Montrer que :
n k
Sp(M) =1+ = <Z 3—1>M
Démonstration. Soit n € N*.
Sn(M) = Z Fr

=M%+ Z par Chasles, car n > 1

k;l

—I+Z 3’“ v

Vérifions que cette égalité est valable pour n = 0.
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0
o D’une part, So(M) = > HFMF =M =1
k=0
0
. D?autrepart,l+% (Z 3’:—1>M:I—|—§(1—1)M:I
k=0

D’ou I’égalité pour tout entier n € N. O

d) En déduire que eM existe et que :

Démonstration. On reconnait une somme partielle de série exponentielle, d’ol

1/ 3k 1,
(501 g @D

D’apres la question 3.a),

puis, d’aprés la question 8.b),

e? — 1

M

n—-+00

n k
Se)=T+2(s 2 1\ — 1+
s\ & w

Donc

‘ eM existe et eM :I+63T71M.

O

7. Dans cette question, on considére la matrice A de la Partie I et on réutilise les notations de la
question 2.b). On fixe un réel ¢.

a) Montrer que, pour tout n € N :
S, (tA) = PS,(tD)P~!

Démonstration. D’aprés la question 2.b), A = PDP~!. On en déduit par récurrence immédiate
que, pour tout k € N, A¥ = PD*P~1. Soit n € N,

| —

(tA)*

|
M=

e
Il

o
x

Sn(tA)

I
Eod
107
=[5
h
o

I
It
o IS

o

)

E

3

I
|
M=
| — =%
o)
=
~
T

/\p
<”3

B
Il
o

M=
=

(tD)k> pt

!

I
T

@
=~
S
3

10
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A

b) Conclure que et existe et en donner une expression sous la forme et4 = PA(t)P~'.

On explicitera la matrice A(t) sous forme de tableau matriciel en fonction de ¢.

Démonstration. On remarque que la matrice tD est diagonale et, plus précisément,

-t 0 0
tD=10 0 0
0 0 ¢t
D’aprés la question 4, la matrice e!? existe et vaut
et 0 0 et 0 0
eP=[0 & 0ol=10 10
0 0 ¢ 0 0 ¢
Ceci veut exactement dire que
et 0 0
Sp(tD) — 0 1 0 (1)
n—+00 0 0 et

D’aprés la question 38.b) et la question précédente, on a alors

S, (tA) = PS,(tD)P™! — PpPetPp~!

n—-+o0o

On en déduit que ' existe et et4 = PA(t)P~! avec

O

En généralisant ce résultat, on montre alors que l’exponentielle d’une matrice diagonalisable est une
matrice diagonalisable (on ne demande pas de le faire).

Partie III : Etude d’un systéme différentiel linéaire

On considére le systéme différentiel linéaire suivant :

2 = 2z@) — 2y() + 2z2(¢)
(S):q (@) = =) + y@) + 22()
Z(t) = —2x(t) — 3z(¢)

(t)

(t)
ot les inconnues x, , z sont des fonctions de classe C! sur R. Pour tout ¢ € R, on pose X (t) = (y(t)) :
z

On a alors :
(9) & X'=AX
ou A est la matrice étudiée dans la partie I.

8. Déterminer 'ensemble des états d’équilibre du systéme différentiel linéaire (.5).

11
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Démonstration. Soit (u,v,w) € R3.

u
(u,v,w) est un état d’équilibre de (S) <= A (v) =051 (R)
w
2
1

u 3
= v) € Vect ( ( 1 ) ) cf question 2.a)
w -2

On en déduit que 'ensemble des états d’équilibre de (S) est
Vect ((3,1,-2)) = {A(3,1,-2) | A € R}
Ul

9. Soit ty € R et soient X et Y deux solutions de (.5). On suppose que X (¢9) = Y (to). Que peut-on
en déduire sur X et Y 7

Démonstration. Notons W = X (to) = Y (o). Sous ces hypothéses, X et Y sont deux solutions du
méme probléme de Cauchy :

-y {Z’(t) = AZ(t)

d’inconnue Z
Z(tg) =W

Or, tout probléme de Cauchy admet une unique solution. On en déduit que X =Y, i.e. pour tout

teR, X(t) =Y(t). O
10. Justifier que l’ensemble des solutions de (.5) est :

{t — ae”'U_1 + BUy + ve'Uy | (a, B,7) € R3}

2 3 -2
ounlU_q = 1],Uy= 1 et U = 0 |.
-2 -2 1

Démonstration. La matrice A est diagonalisable (cf question 2.b)) et on a montré a la question
2.a) que (U_1,Up, Uy) est une base de .#51(R) formée de vecteurs propres de A. D’apreés le cours,
les solutions de (S) sont toutes de la forme

X(t)=aeU_| + B Uy + ve'Uy
= ae_th + BUy + vetUl

ot (a, B,7) € R3. O

11. On considére dans cette question deux problémes de Cauchy :

X' = AX X' = AX
9
(P1) : x(0) = | 4 et (P2): X(0) = | 2
—8 -3

12
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a) i) Déterminer I'unique solution du probléme de Cauchy (P1), que l'on notera X;.

Démonstration. On considére une solution X quelconque de (5) :

X(t) = aetU_1 + BUy + ety

9
X est solution de (P1) < X(0) = ( 4 )
-8

9
< aU_1+ pUy +~U; = (4)

-8
20 +38 —2v=9
= a + p =4

20 =28 + y=-8
20 +38 —2y=9

= - B +2y=-1 Lo +— 2Ly — L,
B — =1 L3+ L3+ 1Ly
20 +38 —2y=9
— - B +2y=-1
L v=0 L3 <+— L3+ Lo
20 + 38 =9
= - p =-1
v=0
[a =3
— 154 =1 par remontées successives
v=0

Ainsi, 'unique solution X; du probléme de Cauchy (P;) est donné par :

6e i +3
Vit € R, Xl(t) = 3e_tU71 +Upg=| 3et+1
—6et—2

O

#) Montrer que la trajectoire associée & la solution X; est convergente. Expliciter le point
limite (¢1, 42, ¢3). Quelle propriété posséde ce point limite vis-a-vis du systéme différentiel
linéaire (5) 7

Démonstration. D’aprés la question précédente, pour tout ¢ € R,

x1(t) 6e=t +3
Xa(t) = (yl(t)) = ( 3el +1 )
z1(t) —6e~t —2

donc z1(t) — 3,y1(t) — letz1(t) — —2. Ainsi la trajectoire associée a la solution
t—+o00 t——+o0 t—+o00

X1 est convergente, de point limite (¢1,¢2,¢3) = (3,1, —2). D’aprés la question 9, ce point
limite est un état d’équilibre du systéme différentiel (.5). O

13
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b) i) Déterminer I'unique solution du probléme de Cauchy (P2), que 'on notera Xos.

Démonstration. On considére une solution X quelconque de (5) :

X(t) = OzeftU_l + BUy + 'yetUl

3
X est solution de (P2) <= X(0) = ( 2 )
-3

3
— aU_1+ BUg+~U; = (2)

-3
20 +38 —2y=3
= a + p =2

—2a =28 + y=-3
20 +38 —2y=3

— - B +2v=1 Lo +— 2Ly — Ly
8 — =0 Ls<+— Ls+ 14
20 +38 —2y=3
— - B +2v=1
vy=1 Ly +— L3+ Lo
« =1
= 15} =1 par remontées successives
vy=1

Ainsi, 'unique solution Xo du probléme de Cauchy (P3) est donné par :

2¢7! + 3 — 2¢
Vit € R, Xo(t) = e_tU_1 + Uy + etUl = et 41
—2et -2+t

#) Montrer que la trajectoire associée a la solution X5 est divergente.

Démonstration. D’apreés la question précédente, pour tout ¢ € R,

xo(t) 2e7t 43 — 2¢t
o= (i) = ()
29(t) —2e7t —24¢!

On remarque alors que za(t) t—+> +o00. Ainsi la trajectoire associée & la solution X est
— 00

divergente. O

c¢) On a représenté page suivante les tracés de 4 solutions du systéme différentiel linéaire (). Dire
quels sont les tracés associés aux solutions X et Xo étudiées ci-dessus. On justifiera les réponses.

Démonstration. « La figure 4 est la seule ou l'on a z(t) . T +00. Ainsi, cette figure correspond
—+00

nécessairement & la solution Xs.

14
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« Dans la figure 3, on a z(t) t—+> —o0. Donc cette figure correspond a une trajectoire divergente.
—+00

Ainsi, cette figure ne correspond pas a la solution Xj.

« Dans la fi 1 li t) = i t) = i t) = 0. Cett iété n’est pas
ans la figure 1, on & lim x(t) m y(t) m z(t) = 0. Cette propriété n’est pas

vérifiée par la solution X7 donc cette figure ne correspond pas & Xj.
« Par élimination, la figure 2 correspond a la solution X;. De plus, en lisant approximativement
les valeurs limites sur le graphe, le tracé est cohérent avec le fait que z1(t) — 3,y1(t) — 1
t——+o0 t——+o0

et z1(t) o —2.

—+00

O

— it} — it}

----- yit) 75 e yith

--- ay -
50

25

0.0

-25 ==

50 ~

-15 T

t t

Fic. 1 Tracé 1 Fic. 2 Tracé 2

— xit) 20000 1 — Xt} 7

40000

30000 1 A 10000 === zit) o

20000

10000 =10000

—20000

10000 ™ ~30000

0000 Ay —40000

Fic. 3 Tracé 3 Fi1G. 4 Tracé 4

12. Dans cette question, on souhaite faire le lien entre la résolution d’un systéme différentiel linéaire
(homogene) et ’exponentielle de matrice introduite a la partie II.

a) On fixe (o, 8,7) € R? et on considére la solution de (5) :
X it ae”tU_1 4 pUy + 7€'y

«

On pose C' = P (,8) € M31(R) (ou P est définie & la question 2.b)).
Y

Montrer que, pour tout t € R, X (t) = *AC.

15
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b)

Démonstration. Soit t € R.

«
A0 = petPplp (B) cf question 7.b)

1 0
=Plac[0]| +5 1 + e' )
0

ol o))

= oze_tU,1 + BUy + e U1
— X(#)

ou l'on a utilisé le fait que P est précisément la matrice obtenue en concaténant les vecteurs
colonnes U_q, Uy et Uj. O

Commenter le résultat obtenu a la question précédente, au regard des résultats du cours sur les
équations différentielles linéaires du premier ordre a coefficient constant.

Démonstration. Considérons une équation différentielle linéaire homogéne a coefficients constants
d’ordre 1 :

y =ay
ol a € R* est un paramétre.

D’aprés le cours, les solutions de cette équation sont de la forme :
y(t) = ce™, ceR

Ainsi, on a montré a la question précédente que les solutions de X’ = AX admettaient une
« formule exponentielle » analogue : ¢ € R est analogue & C' € .5 1(R) (paramétre(s) a choisir)
et e est analogue & et4. O

16
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Probléme 2 (ECRICOME 2025)

Toutes les variables aléatoires de cet exercice sont supposées définies sur le méme espace probabilisé
(Q, o, P).
Soit n un entier naturel non nul.
La population active d’un territoire est divisée en n catégories socioprofessionnelles, numérotées de 1
an.
Pour tout entier ¢« compris entre 1 et n, on note X; la variable aléatoire égale au revenu mensuel, en
milliers d’euros, d’un individu choisi au hasard avec équiprobabilité au sein de la catégorie socioprofes-
sionnelle numéro ¢. On suppose que la variable aléatoire X; admet pour densité la fonction f; définie
sur R par :
1 .

Ve e R, fi(z)={ xitl stw>1,

0 siz < 1.

On note F; la fonction de répartition de Xj.

Partie 1.

1. Vérifier que, pour tout entier ¢ compris entre 1 et n, la fonction f; est une densité de probabilité.

Démonstration.
Soit ¢ € [1,n].
Tl 7

« Pour tout z < 1, fi(x) =0 > 0. Pour tout > 1, fi(z)

« La fonction f; est continue sur | — oo, 1[ car constante et continue sur |1,+oo][ comme inverse
d’une fonction polynomiale qui ne s’annule pas sur |1, +oo[. Ainsi, f; est continue sur R sauf
éventuellement en 1.

o Tout d’abord :

+00 +00
/ fi(z) dx :/ fi(z) dx (car f; est nulle en dehors de [1,+00])
—00 1
+o0 ;
i
- /1 JRCES | dz
i oo
La fonction x — —— est continue sur [1,4o00[ donc 'intégrale —— dx est impropre en
pitl 1 ritl

+00. Soit B > 1.

B 11°
e
1
1 .
:1—§B:>w1 (cari>0)
+o0o
Donc l'intégrale / fi(x) dx converge et vaut 1.
—00

La fonction f; est bien une densité de probabilité.
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2. a)

b)

On dit que la variable aléatoire X;, de densité f;, suit une loi de Pareto de paramétres
(7,1). L’étude des lois de Pareto est un grand classique des écrits en ECG.

Déterminer les entiers naturels ¢, compris entre 1 et n, tels que X; admet une espérance, et
déterminer alors l'espérance de X;.

Démonstration.
Soit i € [1,n].
+oo
La variable aléatoire X; admet une espérance si et seulement si l'intégrale / xfi(x) dx

oo
converge absolument, ce qui revient & montrer la convergence pour ce calcul de moment. De
plus :

+0o0 “+o00
/ xfi(x) de = / xfi(x) dx (car f; est nulle en dehors de [1,400])
1

—00

Il s’agit d’une intégrale de Riemann. D’aprés le critére de Riemann, cette intégrale converge si
et seulement si ¢ > 1. On suppose dans la suite que ¢ > 1. Soit B > 1.

= — : — ,—1>0
i—1 (i— 1B Boteoi—1 (car i )

La variable aléatoire X; admet une espérance si et seulement si i € [2,n],

et dans ce cas E(X;) = - !
i _

O

En justifiant la réponse, classer les numéros de catégorie socioprofessionnelle dans I’ordre de leur
revenu mensuel moyen, du moins élevé au plus élevé.

On ne considérera que les entiers i pour lesquels l’espérance de X; est bien définie.

Démonstration. )
i

Posons, pour tout i € [2,n], u; = — On a, pour tout ¢ € [2,n — 1] :
Z p—

i+1 i G+1D)(i—1)—i® 2-1-4d L,
U, — U; = —_ = = = —
e | i(i—1) i(i—1) i(i— 1)

Ainsi, la suite (u;);c[2,,] est décroissante.

Le classement des catégories socioprofessionnelles dans I'ordre de leur revenu mensuel moyen,
du moins élevé au plus élevé, est donc : n,n —1,...,2.

O
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3. Montrer que, pour tout entier ¢ compris entre 1 et n et pour tout réel x :

1
1——1. siz > 1,

0 six <1.

Démonstration.
Soit i € [1,n].
« La densité f; est nulle en dehors de [1, +oo[ donc on peut considérer que X;(€2) = [1, +o0.
o Soit x € R.
x Six <1, alors Fi(x) =P([X; < z]) =P(@) = 0.

x Six >1, alors :

Fi(z) = /_ Y h)

= / fi(t) dt (car f; est nulle en dehors de [1,+00])
1
T
1 .
=1-= (d’apres le calcul effectué en question 1)

1
1—7 six >1,

On a bien F; : x — T
0 six < 1.
O]
4. Soit U une variable aléatoire & densité de loi uniforme sur 0, 1].
1
Soit ¢ un entier compris entre 1 et n. On pose V; = T

a) Montrer que V; suit la méme loi que Xj.

Démonstration.

1
Yz de sorte que V; = ¢;(U). On a alors :
T

Vi() = 6:(U)(Q) = ¢:(U(Q)) = 9:(]0, 1]) =]1, +o0]

e On pose g; : ¢ —

o Soit z € R.
x Six <1, alors Fy,(z) = P([V; < z]) = P(&@) = 0.
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x Sixz > 1, alors:

Fy,(x) = P([Vi <)

1
=# (| <)
) 1 1
=P ( Ut > }) (par stricte décroissance de x — — sur |0, +o0[)
x x
[ 1 : : ;
=P ( U> z]) (par stricte croissance de x — x* sur ]0, 4+00])
x
1
—1-p ([U < D
xl
1 . o
=1-Fy <1> (car U est a densité)
x
1 1
:1—5 (car0<§<1)
On a donc, pour tout z € R :
1 1
1—— si 1 1—-— siz2>1
Fy () = o osie>1 o sz _ F(x)
0 six <1 0 six <1

La fonction de répartition caractérisant la loi, il suit que V; et X; suivent la méme loi.

O

b) Ecrire une fonction en langage Python nommée simulX, prenant en argument d’entrée I’entier
1, et renvoyant une simulation de la variable aléatoire Xj.

Démonstration.
On propose la fonction Python suivante :

def simulX(i):
U = rd.random()
return 1 / U *x (1/i)

jw N =

Commentaire

On met en ceuvre dans cette question 4 la méthode d’inversion pour simuler des va-
riables aléatoires & densité a partir de la loi uniforme & densité sur |0, 1[.

Partie II.

Soit p un réel de ]0,1[. On choisit un individu au hasard dans la population et on note Y la variable
aléatoire égale au numéro de la catégorie socioprofessionnelle & laquelle cet individu appartient. On
suppose que la variable aléatoire Y — 1 suit la loi binomiale B (n — 1, p).
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5. En utilisant uniquement la fonction random du module numpy . random, écrire une fonction en langage
Python nommée simulY, prenant en arguments d’entrée les paramétres n et p, et renvoyant une
simulation de la variable aléatoire Y.

Démonstration.

On propose la fonction Python suivante, qui commence par simuler la variable aléatoire Y — 1,
que l'on notera W dans le code Python :

def

o Jov ks W N =

simulY(n,p):
W=20
for k in range(n-1):
if rd.random() < p:
W+=1
return W + 1

O

6. Recopier et compléter la fonction, en langage Python, nommée 1oiY, prenant en arguments d’entrée

les parameétres n et p, et renvoyant une liste (p, ...
valeur approchée de P(Y = i).

Démonstration.

On propose de compléter la fonction Python de la maniére suivante :

de

[ [ N N

(B I = (<

f loi¥Y(n,p):
N = 10000
loi = [0] * n
for k in ------ :
y = simulY(n,p)
loi[--] --
return loi

{5 <> B (&1 S S SV | S

def loi
N =
loi
for

Y(n,p):
10000
[0] * n
k in range(N)
y = simulY(n,p)

loily-1] = loily-1] + 1/N

return loi

, Pn) OU pour ¢ compris entre 1 et n, p; est une

D’aprés la loi faible des grands nombres, 1loi[i-1] contient la fréquence empirique de réalisation
de I'événement [Y = i], et donc une approximation de P([Y = i]).

O

7. Ecrire une fonction Python, prenant en arguments d’entrée les paramétres n et p, permettant
d’afficher un diagramme en batons représentant approximativement la loi de Y. On représentera les
valeurs de Y en abscisses et les probabilités correspondantes en ordonnées. On pourra utiliser les

fonctions définies dans les questions précédentes, et 'annexe fournie en fin de sujet.

Démonstration.

On propose la fonction Python suivante :
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def diagrammeY(n,p):
Xabs = [k for k in range(1,n+1)]
Yord = loiY(n,p)
plt.bar (Xabs, Yord)
plt.show()

lov e jw N e

O

8. Dans cette question, on suppose que chaque profession est identifiée de maniére unique par un
numéro appelé code PCS.

Par ailleurs, les différentes professions sont regroupées dans six grandes catégories socioprofession-
nelles, que 'on identifie par un entier de 1 & 6.

On dispose d’une base de données comportant trois tables nommées individu, departement et
profession, décrites ci-dessous.

La table individu contient des informations sur tous les individus de la population active fran-
caise. Chaque entrée correspond donc & un individu. La table comporte les attributs suivants.

o i_nom (de type TEXT) : le nom de l'individu.
o i_prenom (de type TEXT) : le prénom de l'individu.
o i_departement (de type INTEGER) : le numéro de département ou réside 'individu.

o i_insee (de type INTEGER) : le numéro INSEE (ou numéro de sécurité sociale) de I'individu.

o i_code_profession (de type INTEGER) : le code PCS identifiant la profession actuelle de I'in-
dividu.

La table departement contient des informations sur les départements francais. Chaque entrée

correspond donc & un département. La table comporte les attributs suivants.

o d_numero (de type INTEGER) : le numéro du département.

o d_nom (de type TEXT) : le nom du département.

o d_population (de type INTEGER) : le nombre d’habitants vivant dans le département.

La table profession contient des informations sur toutes les professions recensées dans la base
de données. Chaque entrée correspond donc & une profession différente. La table comporte les
attributs suivants.

o p_pcs (de type INTEGER) : le code PCS permettant d’identifier la profession.

o p_categorie (de type INTEGER) : le numéro de la catégorie socioprofessionnelle (de 1 & 6) a
laquelle la profession se trouve rattachée.

o p_intitule (de type TEXT) : I'intitulé de la profession (par exemple, chirurgien dentiste).

a) Que doit vérifier la clé primaire d’une table dans une base de données?

Démonstration.
Une clé primaire identifie chaque enregistrement d’une table de maniére unique. O

b) Pour chacune des trois tables de la base de données de cet exemple, indiquer sans justification

un attribut pouvant jouer le réle de clé primaire.

Démonstration.
L’attribut i_insee peut jouer le role de clé primaire de la table individu.

L’attribut d_numero peut jouer le réle de clé primaire de la table departement.

[’attribut p_pcs peut jouer le réle de clé primaire de la table profession. O
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c)

d)

Dresser un schéma relationnel de la base de données décrite ci-dessus, en mettant en évidence
les relations qui existent entre les tables et les attributs permettant d’établir ces relations.

On s’assurera que chaque table est reliée & au moins 'une des deux autres tables.

Démonstration.

Dans le schéma relationnel suivant, on choisit de mettre en gras les clés primaires et de mettre
en italique les clés étrangéres :

individu(i_nom, i_prenom, i_departement, i _insee, i_ code_ profession)

departement(d numero, d_nom, d_ population)

profession(p pcs, p_categorie, p_intitule)

L’attribut i departement de la table individu est une clé étrangére pointant vers 'attribut
d numero de la table departement.

L’attribut ¢ code profession de la table individu est une clé étrangére pointant vers l'attribut
p_pcs de la table profession. O

Ecrire une requéte SQL renvoyant tous les codes PCS des professions exercées dans le départe-
ment de 'Eure-et-Loir (numéro 28). Chaque code PCS ne pourra apparaitre qu’'une seule fois.

On pourra utiliser la commande DISTINCT décrite dans l’annexe fournie en fin de sujet.

Démonstration.
On propose le code SQL suivant :

SELECT DISTINCT i_code_profession
FROM individu
WHERE i_departement = 28

jw N =

O
e) Ecrire une requéte SQL permettant d’obtenir le numéro de catégorie socioprofessionnelle (entre
1 et 6) de chaque individu.
La requéte devra renvoyer deux attributs pour chaque individu : son numéro INSEE, et la
catégorie socioprofessionnelle & laquelle est rattachée sa profession.
Démonstration.
On propose le code SQL suivant :
1 SELECT i_insee, p_categorie
2 FROM individu INNER JOIN profession
3 ON individu.i_code_profession = profession.p_pcs
O
Partie III.

Soit p un réel de 0, 1[.
Un institut réalise un sondage selon le protocole suivant :

On choisit une catégorie socioprofessionnelle de maniére aléatoire (mais sans équiprobabilité), et on
note Y la variable aléatoire égale au numéro de la catégorie choisie.

Comme dans la partie II, on suppose que Y — 1 suit la loi binomiale B (n — 1, p).

On sélectionne alors un individu au hasard (avec équiprobabilité) dans la catégorie socioprofession-
nelle choisie a ’étape précédente, et on note Z,, la variable aléatoire égale & son revenu mensuel, en
milliers d’euros.
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Enfin, on rappelle que, pour tout entier ¢ compris entre 1 et n, la fonction de répartition F; de la
variable aléatoire X; est donnée par ’égalité (2) montrée a la question 3.
On note G,, la fonction de répartition de la variable aléatoire Z,,.

9. Expliciter Gy, (x) pour tout réel x strictement inférieur a 1.

10.

Démonstration.
Pour tout i € [1,n], X;(2) = [1, +o0o[ (autrement dit, tous les revenus mensuels sont supérieurs ou
égaux a 1000 euros). On en déduit que Z,(2) = [1, +o0[.

Ainsi, pour tout x < 1, Gy, (z) = 0.

Soit x un réel supérieur ou égal a 1.

a)

b)

Justifier que pour tout entier ¢ compris entre 1 et n :

Démonstration.

Soit 7 € [1,n]. Supposons I'événement [Y = 7] réalisé. Dans ce cas, on choisit au hasard (avec
équiprobabilité) un individu dans la catégorie socioprofessionnelle numéro i. Son revenu mensuel
est, par définition, X; mais également Z,. On a alors :

Pry—ij([Zn < 2]) = Pry—y([Xi < 2]) = P([X; < 2]) = Fi(2)

par indépendance de X; et Y.

Ainsi, on a bien : Pyy_;(Z, < x) = Fi(w).

Montrer que :
n—1

Gula) = S Finto) (") k-

Démonstration.
D’aprés la formule des probabilités totales appliquée avec le systéme complet d’événements

(IY = il)ieqing, on a:
Gn(2) = P([Zn < 2])

=1
= zi:l P([Y = i])Pyy—;j(Zn < ) (car, pour tout i € [1,n], P([Y =1i]) #0)
= éP([Y = i) F;(x) (d’apres la question 10.b))
= n}__:: P([Y = k+ 1)) Frr1(x) (par décalage d’indice)
=5 By - 1= )P (o)
=5 A", - feorY ~1 5 B(n—1,p))
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11.

12.

n—1 _
Ainsi, on a bien : Gy (x) = Y Fiyi1(x) (n L 1>pk(1 — p)ni-k,
k=0

¢) En déduire que :

Démonstration.
On continue le calcul précédent :

n

Gn(x) = ;01 Friq(z) (n ; 1>pk(1 _ p)n—l—k

n=l 1 n—1 —l— L
=3 (1_301”1)( i >pk(1—p) 1=k (d’apres (2), carx > 1)

i=0

n=1/n_1 & ik n=1 /n_1 pk(l _ p)n—l—k
— 1— )" _ cv=r.

5 (oo R ()RR

n=1l n — ]. k _1—k 17L—1 n — 1 p k 11—k
= 1 — n _ il 1 _ n

S (o S () () o

1 n—1
=(p+QQ-p)" - p (g +(1 —p)> (par binéme de Newton)
_ L (pta-p "
x x

(p+(1—pa)"t

:1—

(p+(1—pz)" "

Ainsi, on a bien : G, (x) =1 —

:L.n
O
Justifier que Z,, est une variable aléatoire a densité.
Démonstration.
La fonction Gy, est de classe C! sur | — 0o, 1] car constante et sur |1, 4oc[ car elle y coincide avec
une fonction rationnelle dont le dénominateur ne s’annule pas sur |1, +o00].
De plus :
: . (p+ (1 —pa)"! 1t :
lim Gp(z)= lim 1-— =1- =0=G,h(0) = lim Gu(x
z—1t n( ) z—1t ™ 1" n( ) =1~ n( )
donc G, est continue en 1.
Ainsi, G,, est continue sur R et de classe C! sur R sauf éventuellement en 1.
La variable aléatoire Z,, est bien & densité.
O

En utilisant les fonctions simulX et simulY définies aux questions 4.b) et 5, écrire une fonction
en langage Python nommeée sondage, prenant en arguments d’entrée les paramétres n et p, et
renvoyant une simulation de la variable aléatoire Z,,.
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Démonstration.
On propose la fonction Python suivante :

def sondage(n,p):
i = simulY(n,p)
return simulX(i)

o o =

1
13. Dans cette question uniquement, on suppose que p = —.
n

a) Montrer que, pour tout x réel :

Démonstration.
Soit z € R.

x Stz <1, alors Gp(x) =0 (d’apres la question 9).

x Six > 1, alors :

S|l—= 8|F
8
3

I
—
|
SER
S/ N 7 N N
- -
_l_
—
|
3
2=
N~
3
N

Il

[—

|
S R

Pour tout x € R : G, (x) = x

b) Calculer, pour tout z € R, lim G, ().

n—-+0o0o

Démonstration.
Soit = € R.

x Six < 1, alors, pour tout n € N*, G,,(x) = 0 et donc :

lim Gp(z)=0

n—-+oo
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x Six > 1, alors, pour tout n € N* :

1 —1\"! 1
Gn(x):1—(1—xm ) —1- e

(n—1) ln(lx — 1)
nx

x
-1 -1 —1
Or, z — 0 et donc In (1— v ) ~ -2 (on a bien x — 1 # 0). Il suit que :
nr n—r+oo nx n—+oo nT
—1 -1 -1 1-—
(n—l)ln(l—x ) ~ —(n-1)Z ~ T e o7
nx n—+oo NT  n-too x x
Par continuité de I’exponentielle :
1 1-2
lim Gp(z)=1- Zea
n—-+oo xX
-t Gasa
——e =z s
On adonc: lim Gyp(x)= x e
noteo 0 siz < 1.

Commentaire
On peut vérifier que Fz est la fonction de répartition d’une variable aléatoire a densité.
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