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DS5 correction (version A)

Problème 1 (sujet maison)

Partie I : Etude d’une matrice A

On considère la matrice carrée A =

 2 −2 2
1 1 2
−2 0 −3

.
1. a) On exécute le code Python suivant :

1 import numpy as np
2 import numpy.linalg as al
3 A = np.array([[2,-2,2],[1,1,2],[-2,0,-3]])
4 print(al.matrix_power(A,3))

et on obtient l’affichage :

1 [[ 2 -2 2]
2 [ 1 1 2]
3 [-2 0 -3]]

Traduire ce résultat par une égalité entre deux matrices.

Démonstration. D’après l’affichage Python : A3 = A .

b) En déduire les valeurs propres possibles de A.

Démonstration. D’après la question précédente, le polynôme P (X) = X3 −X est un polynôme
annulateur de A. Or,

P (X) = X(X2 − 1) = X(X − 1)(X + 1)

On en déduit que
Sp(A) ⊂ {racines de P (X)} = {−1, 0, 1}

Ainsi, les valeurs propres possibles de A sont −1, 0 et 1 .
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2. a) Déterminer Sp(A) et une base de chacun des sous-espaces propres de A.

Démonstration. Soit U =

 x
y
z

 ∈M3,1(R).

•

U ∈ E−1(A) ⇐⇒ (A+ I)U = 0M3,1(R)

⇐⇒

 3 −2 2
1 2 2
−2 0 −2

xy
z

 =

 0
0
0



⇐⇒


3x− 2y + 2z = 0

x+ 2y + 2z = 0

−2x − 2z = 0

⇐⇒


3x− 2y + 2z = 0

x+ 2y + 2z = 0

x + z = 0 L3 ←− −1
2L3

⇐⇒


3x− 2y + 2z = 0

8y + 4z = 0 L3 ←− 3L2 − L1

2y + z = 0 L3 ←− 3L3 − L1

⇐⇒

{
3x− 2y + 2z = 0

2y + z = 0

⇐⇒

{
3x− 2y = −2z

2y = −z

⇐⇒

{
3x = −3z L1 ←− L1 + L2

2y = −z

⇐⇒

{
x = −z

y = −1
2z

On en déduit que

E−1(A) =

{  x
y
z

 ∈M3,1(R) | x = −z et y = −1

2
z

}

=

{  −z
−1

2z
z

 ∈M3,1(R) | z ∈ R

}

= Vect

(  −1
−1

2
1


)

= Vect

(  2
1
−2


)

E−1(A) 6= {0M3,1(R)} donc −1 est valeur propre de A. De plus, la famille F−1 =

(  2
1
−2


)

:

— engendre E−1(A)

— est libre car constituée d’un unique vecteur non nul
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donc F−1 est une base de E−1(A) .

•

U ∈ E0(A) ⇐⇒ AU = 0M3,1(R)

⇐⇒

 2 −2 2
1 1 2
−2 0 −3

xy
z

 =

 0
0
0



⇐⇒


2x− 2y + 2z = 0

x+ y + 2z = 0

−2x − 3z = 0

⇐⇒


x− y + z = 0

x+ y + 2z = 0

−2x − 3z = 0

⇐⇒


x− y + z = 0

2y + z = 0 L2 ←− L2 − L1

− 2y − z = 0 L3 ←− L3 + 2L1

⇐⇒

{
x− y + z = 0

2y + z = 0

⇐⇒

{
x− y = −z

2y = −z

⇐⇒

{
2x = −3z L1 ←− 2L1 + L2

2y = −z

⇐⇒

{
x = −3

2z

y = −1
2z

On en déduit que

E0(A) =

{  x
y
z

 ∈M3,1(R) | x = −3

2
z et y = −1

2
z

}

=

{  −3
2z
−1

2z
z

 ∈M3,1(R) | z ∈ R

}

= Vect

(  −3
2
−1

2
1


)

= Vect

(  3
1
−2


)

E0(A) 6= {0M3,1(R)} donc 0 est valeur propre de A. De plus, la famille F0 =

(  3
1
−2


)

:

— engendre E0(A)

— est libre car constituée d’un unique vecteur non nul

donc F0 est une base de E0(A) .
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•

U ∈ E1(A) ⇐⇒ (A− I)U = 0M3,1(R)

⇐⇒

 1 −2 2
1 0 2
−2 0 −4

xy
z

 =

 0
0
0



⇐⇒


x− 2y + 2z = 0

x + 2z = 0

−2x − 4z = 0

⇐⇒

{
x− 2y + 2z = 0

x + 2z = 0

⇐⇒

{
x− 2y + 2z = 0

2y = 0 L3 ←− L3 − L1

⇐⇒

{
x = −2z

y = 0

On en déduit que

E1(A) =

{  x
y
z

 ∈M3,1(R) | x = −2z et y = 0

}

=

{  −2z
0
z

 ∈M3,1(R) | z ∈ R

}

= Vect

(  −2
0
1


)

E1(A) 6= {0M3,1(R)} donc 1 est valeur propre de A. De plus, la famille F1 =

(  −2
0
1


)

:

— engendre E1(A)

— est libre car constituée d’un unique vecteur non nul

donc F1 est une base de E1(A) .

Les valeurs propres possibles de A sont −1, 0, 1 et on a vérifié que chacune d’elles est une valeur
propre de A. Donc

Sp(A) = {−1, 0, 1}

b) Démontrer qu’il existe une matrice P ∈M3(R) inversible, dont la première ligne est
(
2 3 −2

)
,

et une matrice D ∈M3(R) diagonale, dont les coefficients diagonaux sont dans l’ordre croissant,
qui vérifient A = PDP−1. On explicitera les matrices P et D.

Démonstration. La matrice A est carrée d’ordre 3 et admet trois valeurs propres distinctes donc
A est diagonalisable. Ainsi, il existe

• une matrice P ∈M3(R) inversible, obtenue en concaténant les bases des sous-espaces propres
de A
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• une matrice D ∈M3(R) diagonale, dont les coefficients diagonaux sont les valeurs propres de
A

telles que A = PDP−1.

On pose alors P =

 2 3 −2
1 1 0
−2 −2 1

 et D =

−1 0 0
0 0 0
0 0 1

. Par la formule de changement de

base, on a bien A = PDP−1.

Partie II : Exponentielle d’une matrice carrée

Si (an) , (bn) , (cn) , (dn) , (en) , (fn) , (gn) , (hn) , (in) désignent neuf suites convergentes, de limites res-
pectives a, b, c, d, e, f, g, h, i, et si (Mn)n∈N est une suite de matrices de M3(R) définie par

∀n ∈ N, Mn =

an bn cn
dn en fn
gn hn in

 ,

on dit que la suite de matrices (Mn)n∈N admet une limite coefficient par coefficient, et on le note

lim
n→+∞

Mn =

a b c
d e f
g h i

 ou Mn −→
n→+∞

a b c
d e f
g h i


Si M ∈M3(R), on pose, pour tout entier naturel n,

Sn(M) =

n∑
k=0

1

k!
Mk ∈M3(R).

Lorsque (Sn(M))n∈N admet une limite coefficient par coefficient, on note eM cette limite.

3. Deux résultats théoriques. On utilisera les notations du préambule de la partie II pour les preuves.
a) Soit M ∈M3(R) et soit (αn) une suite réelle convergente, de limite `. Montrer que la suite de

matrices (αnM) admet une limite coefficient par coefficient et que

lim
n→+∞

αnM = `M

Démonstration. Soit M =

a b c
d e f
g h i

 ∈M3(R). Soit n ∈ N.

αnM = αn

a b c
d e f
g h i


=

αna αnb αnc
αnd αne αnf
αng αnh αni

 −→
n→+∞

`a `b `c
`d `e `f
`g `h `i

 = `

a b c
d e f
g h i

 = `M

b) Soient (Mn) et (M ′n) deux suites de matrices de M3(R) qui admettent chacune une limite
coefficient par coefficient. On note lim

n→+∞
Mn = M et lim

n→+∞
M ′n = M ′. Montrer que les suites

de matrices (Mn + M ′n) et (MnM
′
n) admettent chacune une limite coefficient par coefficient et

que
lim

n→+∞
(Mn +M ′n) = M +M ′ et lim

n→+∞
(MnM

′
n) = MM ′
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Démonstration. Soit n ∈ N.
•

Mn +M ′n =

an bn cn
dn en fn
gn hn in

+

a′n b′n c′n
d′n e′n f ′n
g′n h′n i′n


=

an + a′n bn + b′n cn + c′n
dn + d′n en + e′n fn + f ′n
gn + g′n hn + h′n in + i′n


−→

n→+∞

a+ a′ b+ b′ c+ c′

d+ d′ e+ e′ f + f ′

g + g′ h+ h′ i+ i′

 = M +M ′

•

MnM
′
n =

an bn cn
dn en fn
gn hn in

a′n b′n c′n
d′n e′n f ′n
g′n h′n i′n


=

ana′n + bnd
′
n + cng

′
n anb

′
n + bne

′
n + cnh

′
n anc

′
n + bnf

′
n + cni

′
n

dna
′
n + end

′
n + fng

′
n dnb

′
n + ene

′
n + fnh

′
n dnc

′
n + enf

′
n + fni

′
n

gna
′
n + hnd

′
n + ing

′
n gnb

′
n + hne

′
n + inh

′
n gnc

′
n + hnf

′
n + ini

′
n


−→

n→+∞

aa′ + bd′ + cg′ ab′ + be′ + ch′ ac′ + bf ′ + ci′

da′ + ed′ + fg′ db′ + ee′ + fh′ dc′ + ef ′ + fi′

ga′ + hd′ + ig′ gb′ + he′ + ih′ gc′ + hf ′ + ii′

 = MM ′

Les candidat·es devront référer précisément à ces questions lorsque ces résultats seront utilisés.

4. Montrer que, si D =

a 0 0
0 b 0
0 0 c

, alors eD existe et vaut eD =

ea 0 0
0 eb 0
0 0 ec

.

Ainsi, on a montré que l’exponentielle d’une matrice diagonale est une matrice diagonale.

Démonstration. Soit k ∈ N. La matrice D étant diagonale, on a

Dk =

ak 0 0
0 bk 0
0 0 ck


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Soit n ∈ N.

Sn(D) =
n∑

k=0

1

k!
Dk

=
n∑

k=0

1

k!

ak 0 0
0 bk 0
0 0 ck


=

n∑
k=0

 1
k!a

k 0 0
0 1

k!b
k 0

0 0 1
k!c

k



=



n∑
k=0

1
k!a

k 0 0

0
n∑

k=0

1
k!b

k 0

0 0
n∑

k=0

1
k!c

k


−→

n→+∞

ea 0 0
0 eb 0
0 0 ec


en reconnaissant des sommes partielles de séries exponentielles. Ainsi,

eD existe et eD =

ea 0 0
0 eb 0
0 0 ec



5. Dans cette question uniquement, la matrice M est donnée par M =

0 1 1
0 0 1
0 0 0

.

a) Calculer M2 et M3. En déduire la matrice Mk pour tout entier naturel k.

Démonstration. On a

M2 =

0 1 1
0 0 1
0 0 0

0 1 1
0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0


et

M3 =

0 0 1
0 0 0
0 0 0

0 1 1
0 0 1
0 0 0

 =

0 0 0
0 0 0
0 0 0


Pour tout k > 3, Mk = M3Mk−3 = 0M3(R)M

k−3 = 0M3(R). Finalement,
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Pour tout k ∈ N, Mk =



1 0 0

0 1 0

0 0 1

 si k = 0

0 1 1

0 0 1

0 0 0

 si k = 1

0 0 1

0 0 0

0 0 0

 si k = 2

0M3(R) si k > 3

b) Donner, pour tout entier n supérieur ou égal à 2, l’expression de Sn(M). En déduire l’existence
et l’expression de la matrice eM .

Démonstration. Soit n ∈ N tel que n > 2.

Sn(M) =
n∑

k=0

1

k!
Mk

=
2∑

k=0

1

k!
Mk +

n∑
k=3

1

k!
Mk par Chasles, car n > 2

=
2∑

k=0

1

k!
Mk car Mk = 0M3(R) si k > 3

=

1 0 0
0 1 0
0 0 1

+

0 1 1
0 0 1
0 0 0

+
1

2

0 0 1
0 0 0
0 0 0


=

1 1 3
2

0 1 1
0 0 1


Ainsi, la suite (Sn(M)) est constante à partir du rang 2. On en déduit que

Sn(M) −→
n→+∞

1 1 3
2

0 1 1
0 0 1


donc

eM existe et eM =

1 1 3
2

0 1 1
0 0 1



6. Dans cette question uniquement, la matrice M est donnée par M =

1 1 1
1 1 1
1 1 1

.

a) Calculer M2 et M3 en fonction de M .
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Démonstration. On a

M2 =

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

 =

3 3 3
3 3 3
3 3 3

 = 3M

et
M3 = M2M = (3M)M = 3M2 = 3(3M) = 32M

b) Soit k ∈ N∗. Conjecturer une formule simple pour l’expression de Mk puis la démontrer par
récurrence.

Démonstration. D’après la question précédente, on conjecture que Mk = 3k−1M pour tout
k ∈ N∗.
Montrons par récurrence : ∀k ∈ N∗, P(k)

où P(k) : «Mk = 3k−1M ».
Initialisation :
D’une part, M1 = M . D’autre part, 31−1M = 30M = M . D’où P(1).
Hérédité :
Soit k ∈ N∗. On suppose P(k). Montrons P(k + 1).

Mk+1 = MMk

= M(3k−1M) par hypothèse de récurrence

= 3k−1M2

= 3k−1(3M) cf la question 6.a)

= 3kM

D’où P(k + 1).

Par principe de récurrence, on a montré que pour tout k ∈ N∗, Mk = 3k−1M .

c) Soit n ∈ N. Montrer que :

Sn(M) = I +
1

3

(
n∑

k=0

3k

k!
− 1

)
M

Démonstration. Soit n ∈ N∗.

Sn(M) =
n∑

k=0

1

k!
Mk

= M0 +
n∑

k=1

1

k!
Mk par Chasles, car n > 1

= I +
n∑

k=1

1

k!
3k−1M

= I +
1

3

n∑
k=1

1

k!
3kM

= I +
1

3

(
n∑

k=0

3k

k!
− 30

0!

)
M

= I +
1

3

(
n∑

k=0

3k

k!
− 1

)
M

Vérifions que cette égalité est valable pour n = 0.
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• D’une part, S0(M) =
0∑

k=0

1
k!M

k = 1
0!M

0 = I

• D’autre part, I + 1
3

(
0∑

k=0

3k

k! − 1

)
M = I + 1

3 (1− 1)M = I

D’où l’égalité pour tout entier n ∈ N.

d) En déduire que eM existe et que :

eM = I +
e3 − 1

3
M

Démonstration. On reconnaît une somme partielle de série exponentielle, d’où

1

3

(
n∑

k=0

3k

k!
− 1

)
−→

n→+∞

1

3

(
e3 − 1

)
D’après la question 3.a),

1

3

(
n∑

k=0

3k

k!
− 1

)
M −→

n→+∞

e3 − 1

3
M

puis, d’après la question 3.b),

Sn(M) = I +
1

3

(
n∑

k=0

3k

k!
− 1

)
M −→

n→+∞
I +

e3 − 1

3
M

Donc

eM existe et eM = I + e3−1
3 M .

7. Dans cette question, on considère la matrice A de la Partie I et on réutilise les notations de la
question 2.b). On fixe un réel t.

a) Montrer que, pour tout n ∈ N :
Sn(tA) = PSn(tD)P−1

Démonstration. D’après la question 2.b), A = PDP−1. On en déduit par récurrence immédiate
que, pour tout k ∈ N, Ak = PDkP−1. Soit n ∈ N,

Sn(tA) =
n∑

k=0

1

k!
(tA)k

=
n∑

k=0

tk

k!
Ak

=
n∑

k=0

tk

k!
PDkP−1

= P

(
n∑

k=0

tk

k!
Dk

)
P−1

= P

(
n∑

k=0

1

k!
(tD)k

)
P−1

= PSn(tD)P−1
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b) Conclure que etA existe et en donner une expression sous la forme etA = P∆(t)P−1.
On explicitera la matrice ∆(t) sous forme de tableau matriciel en fonction de t.

Démonstration. On remarque que la matrice tD est diagonale et, plus précisément,

tD =

−t 0 0
0 0 0
0 0 t


D’après la question 4 , la matrice etD existe et vaut

etD =

e−t 0 0
0 e0 0
0 0 et

 =

e−t 0 0
0 1 0
0 0 et


Ceci veut exactement dire que

Sn(tD) −→
n→+∞

e−t 0 0
0 1 0
0 0 et

 (1)

D’après la question 3.b) et la question précédente, on a alors

Sn(tA) = PSn(tD)P−1 −→
n→+∞

P etDP−1

On en déduit que etA existe et etA = P∆(t)P−1 avec

∆(t) = etD =

e−t 0 0
0 1 0
0 0 et



En généralisant ce résultat, on montre alors que l’exponentielle d’une matrice diagonalisable est une
matrice diagonalisable (on ne demande pas de le faire).

Partie III : Etude d’un système différentiel linéaire

On considère le système différentiel linéaire suivant :

(S) :


x′(t) = 2x(t) − 2y(t) + 2z(t)
y′(t) = x(t) + y(t) + 2z(t)
z′(t) = −2x(t) − 3z(t)

où les inconnues x, y, z sont des fonctions de classe C1 sur R. Pour tout t ∈ R, on pose X(t) =

x(t)
y(t)
z(t)

.
On a alors :

(S) ⇐⇒ X ′ = AX

où A est la matrice étudiée dans la partie I.

8. Déterminer l’ensemble des états d’équilibre du système différentiel linéaire (S).
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Démonstration. Soit (u, v, w) ∈ R3.

(u, v, w) est un état d’équilibre de (S) ⇐⇒ A

uv
w

 = 0M3,1(R)

⇐⇒

 2 −2 2
1 1 2
−2 0 −3

uv
w

 =

0
0
0


⇐⇒

uv
w

 ∈ E0(A)

⇐⇒

uv
w

 ∈ Vect

(  3
1
−2


)

cf question 2.a)

On en déduit que l’ensemble des états d’équilibre de (S) est

Vect ((3, 1,−2)) = {λ(3, 1,−2) | λ ∈ R}

9. Soit t0 ∈ R et soient X et Y deux solutions de (S). On suppose que X(t0) = Y (t0). Que peut-on
en déduire sur X et Y ?

Démonstration. Notons W = X(t0) = Y (t0). Sous ces hypothèses, X et Y sont deux solutions du
même problème de Cauchy :

(P) :

{
Z ′(t) = AZ(t)

Z(t0) = W
, d’inconnue Z

Or, tout problème de Cauchy admet une unique solution. On en déduit que X = Y , i.e. pour tout
t ∈ R, X(t) = Y (t).

10. Justifier que l’ensemble des solutions de (S) est :{
t 7→ αe−tU−1 + βU0 + γetU1 | (α, β, γ) ∈ R3

}
où U−1 =

 2
1
−2

, U0 =

 3
1
−2

 et U1 =

−2
0
1

.
Démonstration. La matrice A est diagonalisable (cf question 2.b)) et on a montré à la question
2.a) que (U−1, U0, U1) est une base de M3,1(R) formée de vecteurs propres de A. D’après le cours,
les solutions de (S) sont toutes de la forme

X(t) = αe−tU−1 + βe0tU0 + γetU1

= αe−tU−1 + βU0 + γetU1

où (α, β, γ) ∈ R3.

11. On considère dans cette question deux problèmes de Cauchy :

(P1) :


X ′ = AX

X(0) =

 9

4

−8

 et (P2) :


X ′ = AX

X(0) =

 3

2

−3


12
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a) i) Déterminer l’unique solution du problème de Cauchy (P1), que l’on notera X1.

Démonstration. On considère une solution X quelconque de (S) :

X(t) = αe−tU−1 + βU0 + γetU1

X est solution de (P1) ⇐⇒ X(0) =

 9
4
−8


⇐⇒ αU−1 + βU0 + γU1 =

 9
4
−8



⇐⇒


2α + 3β − 2γ = 9

α + β = 4

−2α − 2β + γ = −8

⇐⇒


2α + 3β − 2γ = 9

− β + 2γ = −1 L2 ←− 2L2 − L1

β − γ = 1 L3 ←− L3 + L1

⇐⇒


2α + 3β − 2γ = 9

− β + 2γ = −1

γ = 0 L3 ←− L3 + L2

⇐⇒


2α + 3β = 9

− β = −1

γ = 0

⇐⇒


α = 3

β = 1

γ = 0

par remontées successives

Ainsi, l’unique solution X1 du problème de Cauchy (P1) est donné par :

∀t ∈ R, X1(t) = 3e−tU−1 + U0 =

 6e−t + 3
3e−t + 1
−6e−t − 2



ii) Montrer que la trajectoire associée à la solution X1 est convergente. Expliciter le point
limite (`1, `2, `3). Quelle propriété possède ce point limite vis-à-vis du système différentiel
linéaire (S) ?

Démonstration. D’après la question précédente, pour tout t ∈ R,

X1(t) =

x1(t)y1(t)
z1(t)

 =

 6e−t + 3
3e−t + 1
−6e−t − 2


donc x1(t) −→

t→+∞
3, y1(t) −→

t→+∞
1 et z1(t) −→

t→+∞
−2. Ainsi la trajectoire associée à la solution

X1 est convergente, de point limite (`1, `2, `3) = (3, 1,−2). D’après la question 9 , ce point
limite est un état d’équilibre du système différentiel (S).
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b) i) Déterminer l’unique solution du problème de Cauchy (P2), que l’on notera X2.

Démonstration. On considère une solution X quelconque de (S) :

X(t) = αe−tU−1 + βU0 + γetU1

X est solution de (P2) ⇐⇒ X(0) =

 3
2
−3


⇐⇒ αU−1 + βU0 + γU1 =

 3
2
−3



⇐⇒


2α + 3β − 2γ = 3

α + β = 2

−2α − 2β + γ = −3

⇐⇒


2α + 3β − 2γ = 3

− β + 2γ = 1 L2 ←− 2L2 − L1

β − γ = 0 L3 ←− L3 + L1

⇐⇒


2α + 3β − 2γ = 3

− β + 2γ = 1

γ = 1 L3 ←− L3 + L2

⇐⇒


α = 1

β = 1

γ = 1

par remontées successives

Ainsi, l’unique solution X2 du problème de Cauchy (P2) est donné par :

∀t ∈ R, X2(t) = e−tU−1 + U0 + etU1 =

2e−t + 3− 2et

e−t + 1
−2e−t − 2 + et



ii) Montrer que la trajectoire associée à la solution X2 est divergente.

Démonstration. D’après la question précédente, pour tout t ∈ R,

X2(t) =

x2(t)y2(t)
z2(t)

 =

2e−t + 3− 2et

e−t + 1
−2e−t − 2 + et


On remarque alors que z2(t) −→

t→+∞
+∞. Ainsi la trajectoire associée à la solution X2 est

divergente.

c) On a représenté page suivante les tracés de 4 solutions du système différentiel linéaire (S). Dire
quels sont les tracés associés aux solutions X1 et X2 étudiées ci-dessus. On justifiera les réponses.

Démonstration. • La figure 4 est la seule où l’on a z(t) −→
t→+∞

+∞. Ainsi, cette figure correspond
nécessairement à la solution X2.
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• Dans la figure 3, on a z(t) −→
t→+∞

−∞. Donc cette figure correspond à une trajectoire divergente.
Ainsi, cette figure ne correspond pas à la solution X1.

• Dans la figure 1, on a lim
t→+∞

x(t) = lim
t→+∞

y(t) = lim
t→+∞

z(t) = 0. Cette propriété n’est pas
vérifiée par la solution X1 donc cette figure ne correspond pas à X1.

• Par élimination, la figure 2 correspond à la solution X1. De plus, en lisant approximativement
les valeurs limites sur le graphe, le tracé est cohérent avec le fait que x1(t) −→

t→+∞
3, y1(t) −→

t→+∞
1

et z1(t) −→
t→+∞

−2.

Fig. 1 Tracé 1 Fig. 2 Tracé 2

Fig. 3 Tracé 3 Fig. 4 Tracé 4

12. Dans cette question, on souhaite faire le lien entre la résolution d’un système différentiel linéaire
(homogène) et l’exponentielle de matrice introduite à la partie II.

a) On fixe (α, β, γ) ∈ R3 et on considère la solution de (S) :

X : t 7→ αe−tU−1 + βU0 + γetU1

On pose C = P

 α
β
γ

 ∈M3,1(R) (où P est définie à la question 2.b)).

Montrer que, pour tout t ∈ R, X(t) = etAC.
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Démonstration. Soit t ∈ R.

etAC = P etDP−1P

 α
β
γ

 cf question 7.b)

= P etD
 α
β
γ


= P

e−t 0 0
0 1 0
0 0 et

αβ
γ


= P

αe−tβ
γet


= P

αe−t1
0
0

+ β

0
1
0

+ γet
0

0
1




= αe−tP

1
0
0

+ βP

0
1
0

+ γetP

0
0
1


= αe−tU−1 + βU0 + γetU1

= X(t)

où l’on a utilisé le fait que P est précisément la matrice obtenue en concaténant les vecteurs
colonnes U−1, U0 et U1.

b) Commenter le résultat obtenu à la question précédente, au regard des résultats du cours sur les
équations différentielles linéaires du premier ordre à coefficient constant.

Démonstration. Considérons une équation différentielle linéaire homogène à coefficients constants
d’ordre 1 :

y′ = ay

où a ∈ R∗ est un paramètre.
D’après le cours, les solutions de cette équation sont de la forme :

y(t) = ceat, c ∈ R

Ainsi, on a montré à la question précédente que les solutions de X ′ = AX admettaient une
« formule exponentielle » analogue : c ∈ R est analogue à C ∈M3,1(R) (paramètre(s) à choisir)
et eat est analogue à etA.
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Problème 2 (ECRICOME 2025)

Toutes les variables aléatoires de cet exercice sont supposées définies sur le même espace probabilisé
(Ω,A ,P).
Soit n un entier naturel non nul.
La population active d’un territoire est divisée en n catégories socioprofessionnelles, numérotées de 1
à n.
Pour tout entier i compris entre 1 et n, on note Xi la variable aléatoire égale au revenu mensuel, en
milliers d’euros, d’un individu choisi au hasard avec équiprobabilité au sein de la catégorie socioprofes-
sionnelle numéro i. On suppose que la variable aléatoire Xi admet pour densité la fonction fi définie
sur R par :

∀x ∈ R, fi(x) =


i

xi+1
si x > 1,

0 si x < 1.

On note Fi la fonction de répartition de Xi.

Partie I.

1. Vérifier que, pour tout entier i compris entre 1 et n, la fonction fi est une densité de probabilité.

Démonstration.
Soit i ∈ J1, nK.

• Pour tout x < 1, fi(x) = 0 > 0. Pour tout x > 1, fi(x) =
i

xi+1
> 0.

• La fonction fi est continue sur ] − ∞, 1[ car constante et continue sur ]1,+∞[ comme inverse
d’une fonction polynomiale qui ne s’annule pas sur ]1,+∞[. Ainsi, fi est continue sur R sauf
éventuellement en 1.

• Tout d’abord :∫ +∞

−∞
fi(x) dx =

∫ +∞

1
fi(x) dx (car fi est nulle en dehors de [1,+∞[)

=

∫ +∞

1

i

xi+1
dx

La fonction x 7→ i

xi+1
est continue sur [1,+∞[ donc l’intégrale

∫ +∞

1

i

xi+1
dx est impropre en

+∞. Soit B > 1. ∫ B

1

i

xi+1
dx =

[
− 1

xi

]B
1

= 1− 1

Bi
−→

B→+∞
1 (car i > 0)

Donc l’intégrale
∫ +∞

−∞
fi(x) dx converge et vaut 1.

La fonction fi est bien une densité de probabilité.
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On dit que la variable aléatoire Xi, de densité fi, suit une loi de Pareto de paramètres
(i, 1). L’étude des lois de Pareto est un grand classique des écrits en ECG.

Commentaire

2. a) Déterminer les entiers naturels i, compris entre 1 et n, tels que Xi admet une espérance, et
déterminer alors l’espérance de Xi.

Démonstration.
Soit i ∈ J1, nK.

La variable aléatoire Xi admet une espérance si et seulement si l’intégrale
∫ +∞

−∞
xfi(x) dx

converge absolument, ce qui revient à montrer la convergence pour ce calcul de moment. De
plus : ∫ +∞

−∞
xfi(x) dx =

∫ +∞

1
xfi(x) dx (car fi est nulle en dehors de [1,+∞[)

=

∫ +∞

1

i

xi
dx

Il s’agit d’une intégrale de Riemann. D’après le critère de Riemann, cette intégrale converge si
et seulement si i > 1. On suppose dans la suite que i > 1. Soit B > 1.∫ B

1

i

xi
dx =

[
− i

(i− 1)xi−1

]B
1

=
i

i− 1
− i

(i− 1)Bi−1 −→
B→+∞

i

i− 1
(car i− 1 > 0)

La variable aléatoire Xi admet une espérance si et seulement si i ∈ J2, nK,

et dans ce cas E(Xi) =
i

i− 1
.

b) En justifiant la réponse, classer les numéros de catégorie socioprofessionnelle dans l’ordre de leur
revenu mensuel moyen, du moins élevé au plus élevé.
On ne considérera que les entiers i pour lesquels l’espérance de Xi est bien définie.

Démonstration.
Posons, pour tout i ∈ J2, nK, ui =

i

i− 1
. On a, pour tout i ∈ J2, n− 1K :

ui+1 − ui =
i+ 1

i
− i

i− 1
=

(i+ 1)(i− 1)− i2

i(i− 1)
=
i2 − 1− i2

i(i− 1)
= − 1

i(i− 1)
< 0

Ainsi, la suite (ui)i∈J2,nK est décroissante.

Le classement des catégories socioprofessionnelles dans l’ordre de leur revenu mensuel moyen,
du moins élevé au plus élevé, est donc : n, n− 1, . . . , 2.

18



E2A 24 janvier 2026
Mathématiques

3. Montrer que, pour tout entier i compris entre 1 et n et pour tout réel x :

Fi(x) =

1− 1

xi
si x > 1,

0 si x < 1.
(2)

Démonstration.
Soit i ∈ J1, nK.

• La densité fi est nulle en dehors de [1,+∞[ donc on peut considérer que Xi(Ω) = [1,+∞[.

• Soit x ∈ R.
× Si x < 1, alors Fi(x) = P([Xi 6 x]) = P(∅) = 0.

× Si x > 1, alors :

Fi(x) =

∫ x

−∞
fi(t) dt

=

∫ x

1
fi(t) dt (car fi est nulle en dehors de [1,+∞[)

=

∫ x

1

i

ti+1
dt

= 1− 1

xi
(d’après le calcul effectué en question 1)

On a bien Fi : x 7→

1− 1

xi
si x > 1,

0 si x < 1.

4. Soit U une variable aléatoire à densité de loi uniforme sur ]0, 1[.

Soit i un entier compris entre 1 et n. On pose Vi =
1

U1/i
.

a) Montrer que Vi suit la même loi que Xi.

Démonstration.

• On pose gi : x 7→ 1

x1/i
de sorte que Vi = gi(U). On a alors :

Vi(Ω) = gi(U)(Ω) = gi(U(Ω)) = gi(]0, 1[) =]1,+∞[

• Soit x ∈ R.
× Si x 6 1, alors FVi(x) = P([Vi 6 x]) = P(∅) = 0.
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× Si x > 1, alors :

FVi(x) = P([Vi 6 x])

= P
([

1

U1/i
6 x

])

= P
([
U1/i >

1

x

])
(par stricte décroissance de x 7→ 1

x
sur ]0,+∞[)

= P
([
U >

1

xi

])
(par stricte croissance de x 7→ xi sur ]0,+∞[)

= 1− P
([
U <

1

xi

])

= 1− FU

(
1

xi

)
(car U est à densité)

= 1− 1

xi
(car 0 <

1

xi
< 1)

On a donc, pour tout x ∈ R :

FVi(x) =

1− 1

xi
si x > 1

0 si x 6 1
=

1− 1

xi
si x > 1

0 si x < 1
= Fi(x)

La fonction de répartition caractérisant la loi, il suit que Vi et Xi suivent la même loi.

b) Écrire une fonction en langage Python nommée simulX, prenant en argument d’entrée l’entier
i, et renvoyant une simulation de la variable aléatoire Xi.

Démonstration.
On propose la fonction Python suivante :

1 def simulX(i):
2 U = rd.random()
3 return 1 / U ** (1/i)

On met en œuvre dans cette question 4 la méthode d’inversion pour simuler des va-
riables aléatoires à densité à partir de la loi uniforme à densité sur ]0, 1[.

Commentaire

Partie II.

Soit p un réel de ]0, 1[. On choisit un individu au hasard dans la population et on note Y la variable
aléatoire égale au numéro de la catégorie socioprofessionnelle à laquelle cet individu appartient. On
suppose que la variable aléatoire Y − 1 suit la loi binomiale B (n− 1, p).
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5. En utilisant uniquement la fonction random du module numpy.random, écrire une fonction en langage
Python nommée simulY, prenant en arguments d’entrée les paramètres n et p, et renvoyant une
simulation de la variable aléatoire Y .

Démonstration.
On propose la fonction Python suivante, qui commence par simuler la variable aléatoire Y − 1,
que l’on notera W dans le code Python :

1 def simulY(n,p):
2 W = 0
3 for k in range(n-1):
4 if rd.random() < p:
5 W += 1
6 return W + 1

6. Recopier et compléter la fonction, en langage Python, nommée loiY, prenant en arguments d’entrée
les paramètres n et p, et renvoyant une liste (p1, . . . , pn) où pour i compris entre 1 et n, pi est une
valeur approchée de P(Y = i).

1 def loiY(n,p):
2 N = 10000
3 loi = [0] * n
4 for k in –––––- :
5 y = simulY(n,p)
6 loi[–-] ––
7 return loi

Démonstration.
On propose de compléter la fonction Python de la manière suivante :

1 def loiY(n,p):
2 N = 10000
3 loi = [0] * n
4 for k in range(N) :
5 y = simulY(n,p)
6 loi[y-1] = loi[y-1] + 1/N
7 return loi

D’après la loi faible des grands nombres, loi[i-1] contient la fréquence empirique de réalisation
de l’événement [Y = i], et donc une approximation de P([Y = i]).

7. Écrire une fonction Python, prenant en arguments d’entrée les paramètres n et p, permettant
d’afficher un diagramme en bâtons représentant approximativement la loi de Y . On représentera les
valeurs de Y en abscisses et les probabilités correspondantes en ordonnées. On pourra utiliser les
fonctions définies dans les questions précédentes, et l’annexe fournie en fin de sujet.

Démonstration.
On propose la fonction Python suivante :
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1 def diagrammeY(n,p):
2 Xabs = [k for k in range(1,n+1)]
3 Yord = loiY(n,p)
4 plt.bar(Xabs, Yord)
5 plt.show()

8. Dans cette question, on suppose que chaque profession est identifiée de manière unique par un
numéro appelé code PCS.
Par ailleurs, les différentes professions sont regroupées dans six grandes catégories socioprofession-
nelles, que l’on identifie par un entier de 1 à 6.
On dispose d’une base de données comportant trois tables nommées individu, departement et
profession, décrites ci-dessous.

• La table individu contient des informations sur tous les individus de la population active fran-
çaise. Chaque entrée correspond donc à un individu. La table comporte les attributs suivants.

� i_nom (de type TEXT) : le nom de l’individu.

� i_prenom (de type TEXT) : le prénom de l’individu.

� i_departement (de type INTEGER) : le numéro de département où réside l’individu.

� i_insee (de type INTEGER) : le numéro INSEE (ou numéro de sécurité sociale) de l’individu.

� i_code_profession (de type INTEGER) : le code PCS identifiant la profession actuelle de l’in-
dividu.

• La table departement contient des informations sur les départements français. Chaque entrée
correspond donc à un département. La table comporte les attributs suivants.

� d_numero (de type INTEGER) : le numéro du département.

� d_nom (de type TEXT) : le nom du département.

� d_population (de type INTEGER) : le nombre d’habitants vivant dans le département.

• La table profession contient des informations sur toutes les professions recensées dans la base
de données. Chaque entrée correspond donc à une profession différente. La table comporte les
attributs suivants.

� p_pcs (de type INTEGER) : le code PCS permettant d’identifier la profession.

� p_categorie (de type INTEGER) : le numéro de la catégorie socioprofessionnelle (de 1 à 6) à
laquelle la profession se trouve rattachée.

� p_intitule (de type TEXT) : l’intitulé de la profession (par exemple, chirurgien dentiste).

a) Que doit vérifier la clé primaire d’une table dans une base de données ?

Démonstration.
Une clé primaire identifie chaque enregistrement d’une table de manière unique.

b) Pour chacune des trois tables de la base de données de cet exemple, indiquer sans justification
un attribut pouvant jouer le rôle de clé primaire.

Démonstration.
L’attribut i_insee peut jouer le rôle de clé primaire de la table individu.
L’attribut d_numero peut jouer le rôle de clé primaire de la table departement.
L’attribut p_pcs peut jouer le rôle de clé primaire de la table profession.
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c) Dresser un schéma relationnel de la base de données décrite ci-dessus, en mettant en évidence
les relations qui existent entre les tables et les attributs permettant d’établir ces relations.
On s’assurera que chaque table est reliée à au moins l’une des deux autres tables.

Démonstration.
Dans le schéma relationnel suivant, on choisit de mettre en gras les clés primaires et de mettre
en italique les clés étrangères :
individu(i_nom, i_prenom, i_departement, i_insee, i_code_profession)
departement(d_numero, d_nom, d_population)
profession(p_pcs, p_categorie, p_intitule)
L’attribut i_departement de la table individu est une clé étrangère pointant vers l’attribut
d_numero de la table departement.
L’attribut i_code_profession de la table individu est une clé étrangère pointant vers l’attribut
p_pcs de la table profession.

d) Écrire une requête SQL renvoyant tous les codes PCS des professions exercées dans le départe-
ment de l’Eure-et-Loir (numéro 28). Chaque code PCS ne pourra apparaître qu’une seule fois.
On pourra utiliser la commande DISTINCT décrite dans l’annexe fournie en fin de sujet.

Démonstration.
On propose le code SQL suivant :

1 SELECT DISTINCT i_code_profession
2 FROM individu
3 WHERE i_departement = 28

e) Écrire une requête SQL permettant d’obtenir le numéro de catégorie socioprofessionnelle (entre
1 et 6) de chaque individu.
La requête devra renvoyer deux attributs pour chaque individu : son numéro INSEE, et la
catégorie socioprofessionnelle à laquelle est rattachée sa profession.

Démonstration.
On propose le code SQL suivant :

1 SELECT i_insee, p_categorie
2 FROM individu INNER JOIN profession
3 ON individu.i_code_profession = profession.p_pcs

Partie III.

Soit p un réel de ]0, 1[.
Un institut réalise un sondage selon le protocole suivant :
• On choisit une catégorie socioprofessionnelle de manière aléatoire (mais sans équiprobabilité), et on
note Y la variable aléatoire égale au numéro de la catégorie choisie.
Comme dans la partie II, on suppose que Y − 1 suit la loi binomiale B (n− 1, p).

• On sélectionne alors un individu au hasard (avec équiprobabilité) dans la catégorie socioprofession-
nelle choisie à l’étape précédente, et on note Zn la variable aléatoire égale à son revenu mensuel, en
milliers d’euros.
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Enfin, on rappelle que, pour tout entier i compris entre 1 et n, la fonction de répartition Fi de la
variable aléatoire Xi est donnée par l’égalité (2) montrée à la question 3 .
On note Gn la fonction de répartition de la variable aléatoire Zn.
9. Expliciter Gn(x) pour tout réel x strictement inférieur à 1.

Démonstration.
Pour tout i ∈ J1, nK, Xi(Ω) = [1,+∞[ (autrement dit, tous les revenus mensuels sont supérieurs ou
égaux à 1000 euros). On en déduit que Zn(Ω) = [1,+∞[.

Ainsi, pour tout x < 1, Gn(x) = 0.

10. Soit x un réel supérieur ou égal à 1.
a) Justifier que pour tout entier i compris entre 1 et n :

P[Y=i](Zn 6 x) = Fi(x).

Démonstration.
Soit i ∈ J1, nK. Supposons l’événement [Y = i] réalisé. Dans ce cas, on choisit au hasard (avec
équiprobabilité) un individu dans la catégorie socioprofessionnelle numéro i. Son revenu mensuel
est, par définition, Xi mais également Zn. On a alors :

P[Y=i]([Zn 6 x]) = P[Y=i]([Xi 6 x]) = P([Xi 6 x]) = Fi(x)

par indépendance de Xi et Y .

Ainsi, on a bien : P[Y=i](Zn 6 x) = Fi(x).

b) Montrer que :

Gn(x) =
n−1∑
k=0

Fk+1(x)

(
n− 1

k

)
pk(1− p)n−1−k.

Démonstration.
D’après la formule des probabilités totales appliquée avec le système complet d’événements
([Y = i])i∈J1,nK, on a :

Gn(x) = P([Zn 6 x])

=
n∑

i=1
P([Y = i] ∩ [Zn 6 x])

=
n∑

i=1
P([Y = i])P[Y=i](Zn 6 x) (car, pour tout i ∈ J1, nK, P([Y = i]) 6= 0)

=
n∑

i=1
P([Y = i])Fi(x) (d’après la question 10.b))

=
n−1∑
i=0

P([Y = k + 1])Fk+1(x) (par décalage d’indice)

=
n−1∑
i=0

P([Y − 1 = k])Fk+1(x)

=
n−1∑
i=0

Fk+1(x)

(
n− 1

k

)
pk(1− p)n−1−k (car Y − 1 ↪→ B (n− 1, p))
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Ainsi, on a bien : Gn(x) =
n−1∑
k=0

Fk+1(x)

(
n− 1

k

)
pk(1− p)n−1−k.

c) En déduire que :

Gn(x) = 1− (p+ (1− p)x)n−1

xn
.

Démonstration.
On continue le calcul précédent :

Gn(x) =
n−1∑
i=0

Fk+1(x)

(
n− 1

k

)
pk(1− p)n−1−k

=
n−1∑
i=0

(
1− 1

xk+1

)(
n− 1

k

)
pk(1− p)n−1−k (d’après (2), car x > 1)

=
n−1∑
i=0

(
n− 1

k

)
pk(1− p)n−1−k −

n−1∑
i=0

(
n− 1

k

)
pk(1− p)n−1−k

xk+1

=
n−1∑
i=0

(
n− 1

k

)
pk(1− p)n−1−k − 1

x

n−1∑
i=0

(
n− 1

k

)(p
x

)k
(1− p)n−1−k

= (p+ (1− p))n−1 − 1

x

(p
x

+ (1− p)
)n−1

(par binôme de Newton)

= 1n−1 − 1

x

(
p+ x(1− p)

x

)n−1

= 1− (p+ (1− p)x)n−1

xn

Ainsi, on a bien : Gn(x) = 1− (p+ (1− p)x)n−1

xn
.

11. Justifier que Zn est une variable aléatoire à densité.

Démonstration.
La fonction Gn est de classe C1 sur ] −∞, 1[ car constante et sur ]1,+∞[ car elle y coïncide avec
une fonction rationnelle dont le dénominateur ne s’annule pas sur ]1,+∞[.
De plus :

lim
x→1+

Gn(x) = lim
x→1+

1− (p+ (1− p)x)n−1

xn
= 1− 1n−1

1n
= 0 = Gn(0) = lim

x→1−
Gn(x)

donc Gn est continue en 1.

Ainsi, Gn est continue sur R et de classe C1 sur R sauf éventuellement en 1.
La variable aléatoire Zn est bien à densité.

12. En utilisant les fonctions simulX et simulY définies aux questions 4.b) et 5 , écrire une fonction
en langage Python nommée sondage, prenant en arguments d’entrée les paramètres n et p, et
renvoyant une simulation de la variable aléatoire Zn.
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Démonstration.
On propose la fonction Python suivante :

1 def sondage(n,p):
2 i = simulY(n,p)
3 return simulX(i)

13. Dans cette question uniquement, on suppose que p =
1

n
.

a) Montrer que, pour tout x réel :

Gn(x) =

1− 1

x

(
1− x− 1

nx

)n−1
si x > 1,

0 si x < 1.

Démonstration.
Soit x ∈ R.
× Si x < 1, alors Gn(x) = 0 (d’après la question 9 ).
× Si x > 1, alors :

Gn(x) = 1−

(
1

n
+

(
1− 1

n

)
x

)n−1

xn

= 1− 1

x

(
1

n
+

(
1− 1

n

)
x

)n−1

xn−1

= 1− 1

x

(
1

nx
+ 1− 1

n

)n−1

= 1− 1

x

(
1

nx
+ 1− x

nx

)n−1

= 1− 1

x

(
1− x− 1

nx

)n−1

Pour tout x ∈ R : Gn(x) =

1− 1

x

(
1− x− 1

nx

)n−1
si x > 1,

0 si x < 1.

b) Calculer, pour tout x ∈ R, lim
n→+∞

Gn(x).

Démonstration.
Soit x ∈ R.
× Si x 6 1, alors, pour tout n ∈ N∗, Gn(x) = 0 et donc :

lim
n→+∞

Gn(x) = 0
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× Si x > 1, alors, pour tout n ∈ N∗ :

Gn(x) = 1− 1

x

(
1− x− 1

nx

)n−1
= 1− 1

x
e
(n−1) ln

(
1−
x− 1

nx

)

Or,
x− 1

nx
−→

n→+∞
0 et donc ln

(
1− x− 1

nx

)
∼

n→+∞
− x− 1

nx
(on a bien x− 1 6= 0). Il suit que :

(n− 1) ln

(
1− x− 1

nx

)
∼

n→+∞
− (n− 1)

x− 1

nx
∼

n→+∞
− x− 1

x
=

1− x
x

Par continuité de l’exponentielle :

lim
n→+∞

Gn(x) = 1− 1

x
e

1−x
x

On a donc : lim
n→+∞

Gn(x) =

1− 1

x
e

1−x
x si x > 1,

0 si x 6 1.
.

On peut vérifier que FZ est la fonction de répartition d’une variable aléatoire à densité.

Commentaire
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