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DS5 barème (version A)

Problème 1 (sujet maison)

Partie I : Etude d’une matrice A

On considère la matrice carrée A =

 2 −2 2
1 1 2
−2 0 −3

.
1. a) On exécute le code Python suivant :

1 import numpy as np
2 import numpy.linalg as al
3 A = np.array([[2,-2,2],[1,1,2],[-2,0,-3]])
4 print(al.matrix_power(A,3))

et on obtient l’affichage :

1 [[ 2 -2 2]
2 [ 1 1 2]
3 [-2 0 -3]]

Traduire ce résultat par une égalité entre deux matrices.

• 1 pt : A3 = A

b) En déduire les valeurs propres possibles de A.

• 1 pt : P (X) = X3 −X = X(X − 1)(X + 1) est un polynôme annulateur de A
• 1 pt : Sp(A) ⊂ {racines de P (X)}
• 1 pt : les valeurs propres possibles de A sont −1, 0 et 1

2. a) Déterminer Sp(A) et une base de chacun des sous-espaces propres de A.

• 2 pts : E−1(A) = Vect

(  2
1
−2


)

• 1 pt : E−1(A) 6= {0M3,1(R)} donc −1 est valeur propre de A

• 1 pt : F−1 =

(  2
1
−2


)

est une base de E−1(A)

• 1 pt : E0(A) = Vect

(  3
1
−2


)

• 1 pt : E1(A) = Vect

(  −2
0
1


)

b) Démontrer qu’il existe une matrice P ∈M3(R) inversible, dont la première ligne est
(
2 3 −2

)
,

et une matrice D ∈M3(R) diagonale, dont les coefficients diagonaux sont dans l’ordre croissant,
qui vérifient A = PDP−1. On explicitera les matrices P et D.

• 1 pt : La matrice A est carrée d’ordre 3 et admet trois valeurs propres distinctes
donc A est diagonalisable
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• 1 pt : P =

 2 3 −2
1 1 0
−2 −2 1

 et D =

−1 0 0
0 0 0
0 0 1


• 1 pt : Par la formule de changement de base, on a bien A = PDP−1

ou P est obtenue par concaténation des bases des sous-espaces propres

Partie II : Exponentielle d’une matrice carrée

Si (an) , (bn) , (cn) , (dn) , (en) , (fn) , (gn) , (hn) , (in) désignent neuf suites convergentes, de limites res-
pectives a, b, c, d, e, f, g, h, i, et si (Mn)n∈N est une suite de matrices de M3(R) définie par

∀n ∈ N, Mn =

an bn cn
dn en fn
gn hn in

 ,

on dit que la suite de matrices (Mn)n∈N admet une limite coefficient par coefficient, et on le note

lim
n→+∞

Mn =

a b c
d e f
g h i

 ou Mn −→
n→+∞

a b c
d e f
g h i


Si M ∈M3(R), on pose, pour tout entier naturel n,

Sn(M) =

n∑
k=0

1

k!
Mk ∈M3(R).

Lorsque (Sn(M))n∈N admet une limite coefficient par coefficient, on note eM cette limite.

3. Deux résultats théoriques. On utilisera les notations du préambule de la partie II pour les preuves.
a) Soit M ∈M3(R) et soit (αn) une suite réelle convergente, de limite `. Montrer que la suite de

matrices (αnM) admet une limite coefficient par coefficient et que

lim
n→+∞

αnM = `M

• 2 pts : calcul correct

b) Soient (Mn) et (M ′n) deux suites de matrices de M3(R) qui admettent chacune une limite
coefficient par coefficient. On note lim

n→+∞
Mn = M et lim

n→+∞
M ′n = M ′. Montrer que les suites

de matrices (Mn + M ′n) et (MnM
′
n) admettent chacune une limite coefficient par coefficient et

que
lim

n→+∞
(Mn +M ′n) = M +M ′ et lim

n→+∞
(MnM

′
n) = MM ′

• 1 pt : calcul correct pour la somme

• 2 pts : calcul correct pour le produit

Les candidat·es devront référer précisément à ces questions lorsque ces résultats seront utilisés.

4. Montrer que, si D =

a 0 0
0 b 0
0 0 c

, alors eD existe et vaut eD =

ea 0 0
0 eb 0
0 0 ec

.

Ainsi, on a montré que l’exponentielle d’une matrice diagonale est une matrice diagonale.

• 1 pt : Dk =

ak 0 0
0 bk 0
0 0 ck


2
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• 1 pt : Sn(D) =



n∑
k=0

1
k!a

k 0 0

0
n∑
k=0

1
k!b

k 0

0 0
n∑
k=0

1
k!c

k


• 1 pt : reconnaissance des sommes partielles de séries exponentielles

5. Dans cette question uniquement, la matrice M est donnée par M =

0 1 1
0 0 1
0 0 0

.

a) Calculer M2 et M3. En déduire la matrice Mk pour tout entier naturel k.

• 1 pt : M2 =

0 1 1
0 0 1
0 0 0

0 1 1
0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0


• 1 pt : M3 =

0 0 1
0 0 0
0 0 0

0 1 1
0 0 1
0 0 0

 =

0 0 0
0 0 0
0 0 0


• 1 pt : synthèse

b) Donner, pour tout entier n supérieur ou égal à 2, l’expression de Sn(M). En déduire l’existence
et l’expression de la matrice eM .

• 2 pts : Sn(M) =

1 1 3
2

0 1 1
0 0 1


• 1 pt : eM existe et eM =

1 1 3
2

0 1 1
0 0 1


6. Dans cette question uniquement, la matrice M est donnée par M =

1 1 1
1 1 1
1 1 1

.

a) Calculer M2 et M3 en fonction de M .

• 1 pt : M2 = 3M

• 1 pt : M3 = 32M

b) Soit k ∈ N∗. Conjecturer une formule simple pour l’expression de Mk puis la démontrer par
récurrence.

• 1 pt : conjecture, pour tout k ∈ N∗, Mk = 3k−1M

• 1 pt : initialisation

• 1 pt : hérédité

c) Soit n ∈ N. Montrer que :

Sn(M) = I +
1

3

(
n∑
k=0

3k

k!
− 1

)
M

• 2 pts : calcul

d) En déduire que eM existe et que :

eM = I +
e3 − 1

3
M
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• 1 pt : 1
3

(
n∑
k=0

3k

k! − 1

)
−→

n→+∞
1
3

(
e3 − 1

)
• 1 pt : d’après la question 3.a), 1

3

(
n∑
k=0

3k

k! − 1

)
M −→

n→+∞
e3−1
3 M

• 1 pt : d’après la question 3.b), Sn(M) = I + 1
3

(
n∑
k=0

3k

k! − 1

)
M −→

n→+∞
I + e3−1

3 M

7. Dans cette question, on considère la matrice A de la Partie I et on réutilise les notations de la
question 2.b). On fixe un réel t.

a) Montrer que, pour tout n ∈ N :
Sn(tA) = PSn(tD)P−1

• 1 pt : A = PDP−1. On en déduit par récurrence immédiate que, pour tout k ∈ N,
Ak = PDkP−1

• 1 pt : Sn(tA) = PSn(tD)P−1

b) Conclure que etA existe et en donner une expression sous la forme etA = P∆(t)P−1.
On explicitera la matrice ∆(t) sous forme de tableau matriciel en fonction de t.

• 1 pt : D’après la question 4 , la matrice etD existe et vaut

etD =

e−t 0 0
0 e0 0
0 0 et

 =

e−t 0 0
0 1 0
0 0 et


• 1 pt : D’après la question 3.b) et la question précédente, on a alors

Sn(tA) = PSn(tD)P−1 −→
n→+∞

PetDP−1

• 1 pt : etA existe et etA = P∆(t)P−1 avec

∆(t) = etD =

e−t 0 0
0 1 0
0 0 et


En généralisant ce résultat, on montre alors que l’exponentielle d’une matrice diagonalisable est une
matrice diagonalisable (on ne demande pas de le faire).

Partie III : Etude d’un système différentiel linéaire

On considère le système différentiel linéaire suivant :

(S) :


x′(t) = 2x(t) − 2y(t) + 2z(t)
y′(t) = x(t) + y(t) + 2z(t)
z′(t) = −2x(t) − 3z(t)

où les inconnues x, y, z sont des fonctions de classe C1 sur R. Pour tout t ∈ R, on pose X(t) =

x(t)
y(t)
z(t)

.
On a alors :

(S) ⇐⇒ X ′ = AX

où A est la matrice étudiée dans la partie I.

8. Déterminer l’ensemble des états d’équilibre du système différentiel linéaire (S).
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• 1 pt : (u, v, w) est un état d’équilibre de (S) ⇐⇒

uv
w

 ∈ E0(A)

• 1 pt : l’ensemble des états d’équilibre de (S) est

Vect ((3, 1,−2)) = {λ(3, 1,−2) | λ ∈ R}

9. Soit t0 ∈ R et soient X et Y deux solutions de (S). On suppose que X(t0) = Y (t0). Que peut-on
en déduire sur X et Y ?

• 1 pt : X et Y sont solutions du même problème de Cauchy

• 1 pt : tout problème de Cauchy admet une unique solution donc X = Y

10. Justifier que l’ensemble des solutions de (S) est :{
t 7→ αe−tU−1 + βU0 + γetU1 | (α, β, γ) ∈ R3

}
où U−1 =

 2
1
−2

, U0 =

 3
1
−2

 et U1 =

−2
0
1

.
• 1 pt : La matrice A est diagonalisable (cf question 2.b))

• 1 pt : on a montré à la question 2.a) que (U−1, U0, U1) est une base de M3,1(R) formée
de vecteurs propres de A

11. On considère dans cette question deux problèmes de Cauchy :

(P1) :


X ′ = AX

X(0) =

 9

4

−8

 et (P2) :


X ′ = AX

X(0) =

 3

2

−3


a) i) Déterminer l’unique solution du problème de Cauchy (P1), que l’on notera X1.

• 1 pt : écriture correcte du système


2α + 3β − 2γ = 9

α + β = 4

−2α − 2β + γ = −8

• 1 pt : αU−1 + βU0 + γU1 =

 9
4
−8

 ⇐⇒

α = 3

β = 1

γ = 0

• 1 pt : X1(t) = 3e−tU−1 + U0 =

 6e−t + 3
3e−t + 1
−6e−t − 2


ii) Montrer que la trajectoire associée à la solution X1 est convergente. Expliciter le point

limite (`1, `2, `3). Quelle propriété possède ce point limite vis-à-vis du système différentiel
linéaire (S) ?

• 1 pt : x1(t) −→
t→+∞

3, y1(t) −→
t→+∞

1 et z1(t) −→
t→+∞

−2. Ainsi la trajectoire associée à

la solution X1 est convergente, de point limite (`1, `2, `3) = (3, 1,−2)

• 1 pt : d’après la question 9 , ce point limite est un état d’équilibre du système
différentiel (S)

b) i) Déterminer l’unique solution du problème de Cauchy (P2), que l’on notera X2.

5



E2A 24 janvier 2026
Mathématiques

• 1 pt : écriture correcte du système


2α + 3β − 2γ = 3

α + β = 2

−2α − 2β + γ = −3

• 1 pt : αU−1 + βU0 + γU1 =

 3
2
−3

 ⇐⇒

α = 1

β = 1

γ = 1

• 1 pt : X2(t) = e−tU−1 + U0 + etU1 =

2e−t + 3− 2et

e−t + 1
−2e−t − 2 + et


ii) Montrer que la trajectoire associée à la solution X2 est divergente.

• 1 pt : z2(t) −→
t→+∞

+∞. La trajectoire associée à la solution X2 est divergente.

c) On a représenté page suivante les tracés de 4 solutions du système différentiel linéaire (S). Dire
quels sont les tracés associés aux solutions X1 et X2 étudiées ci-dessus. On justifiera les réponses.

• 1 pt : La figure 4 est la seule où l’on a z(t) −→
t→+∞

+∞. Ainsi, cette figure correspond

nécessairement à la solution X2.

• 2 pts : Dans la figure 3, on a z(t) −→
t→+∞

−∞. Donc cette figure correspond à une

trajectoire divergente. Ainsi, cette figure ne correspond pas à la solution X1.
Dans la figure 1, on a lim

t→+∞
x(t) = lim

t→+∞
y(t) = lim

t→+∞
z(t) = 0. Cette propriété n’est

pas vérifiée par la solution X1 donc cette figure ne correspond pas à X1.
Par élimination, la figure 2 correspond à la solution X1. De plus, en lisant approxi-
mativement les valeurs limites sur le graphe, le tracé est cohérent avec le fait que
x1(t) −→

t→+∞
3, y1(t) −→

t→+∞
1 et z1(t) −→

t→+∞
−2.

12. Dans cette question, on souhaite faire le lien entre la résolution d’un système différentiel linéaire
(homogène) et l’exponentielle de matrice introduite à la partie II.

a) On fixe (α, β, γ) ∈ R3 et on considère la solution de (S) :

X : t 7→ αe−tU−1 + βU0 + γetU1

On pose C = P

 α
β
γ

 ∈M3,1(R) (où P est définie à la question 2.b)).

Montrer que, pour tout t ∈ R, X(t) = etAC.

• 2 pts : calcul correct

b) Commenter le résultat obtenu à la question précédente, au regard des résultats du cours sur les
équations différentielles linéaires du premier ordre à coefficient constant.

• 1 pt : la formule obtenue est analogue
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Fig. 1 Tracé 1 Fig. 2 Tracé 2

Fig. 3 Tracé 3 Fig. 4 Tracé 4

Problème 2 - Une propriété limite des lois de Pareto (ESSEC I 2011)

Question préliminaire

Soit g une fonction continue sur un intervalle I, à valeurs réelles.

1. a) Montrer que pour tout α et β dans I tels que α < β :

1

β − α

∫ β

α
g(t) dt =

∫ 1

0
g
(
α+ (β − α)x

)
dx

• 1 pt : g est continue sur l’intervalle I donc l’intégrale
∫ β

α
g(t) dt est bien définie

• 1 pt : On effectue le changement de variable x =
1

β − α
t− α

β − α

• 1 pt : Ce changement de variable est valide car ψ : x 7→ (β−α)x+α est de classe C1 sur [0, 1]

b) Soit a, b, c, d dans I tels que a < c < d < b.
On suppose g décroissante sur I, établir l’encadrement :

1

b− c

∫ b

c
g(t) dt 6

1

d− c

∫ d

c
g(t) dt 6

1

d− a

∫ d

a
g(t) dt

• 1 pt : mise sous forme normale en vérifiant les hypothèses de la question 1
• 1 pt : ∀x ∈ [0, 1], g

(
c+ (d− c) x

)
> g

(
c+ (b− c) x

)
• 1 pt : D’après ce qui précède, par croissance de l’intégrale, les bornes étant dans l’ordre

croissant (0 6 1) :
∫ 1

0
g
(
c+ (d− c) x

)
dx >

∫ 1

0
g
(
c+ (b− c) x

)
dx

7
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• 1 pt : ∀x ∈ [0, 1], g
(
a+ (d− a) x

)
> g

(
c+ (d− c) x

)
• 1 pt : D’après ce qui précède, par croissance de l’intégrale, les bornes étant dans l’ordre

croissant (0 6 1) :
∫ 1

0
g
(
a+ (d− a) x

)
dx >

∫ 1

0
g
(
c+ (d− c) x

)
dx

Partie I - Partie fractionnaire d’une variable à densité

• Pour tout réel x positif ou nul :

− on note [x] la partie entière de x. On rappelle qu’il s’agit de l’unique entier naturel n qui vérifie
l’encadrement : n 6 x < n+ 1.

− on note
{
x
}

= x− [x], que l’on appelle la partie fractionnaire de x.

Par exemple, si x = 12, 34, alors [x] = 12 et {x} = 0, 34.

• Dans cette partie, X désigne une variable aléatoire à valeurs réelles admettant une densité f qui
vérifie les propriétés :

− f est nulle sur ]−∞, 0[ ;

− la restriction de f à [0,+∞[ est continue et décroissante.

On pose M = f(0), c’est le maximum de f sur R.

Soit Y =
{
X
}

= X −
[
X
]
, la variable aléatoire égale à la partie fractionnaire de X.

On note FY la fonction de répartition de Y .

2. Que vaut FY (y) lorsque y < 0 ? Que vaut FY (y) lorsque y > 1 ?
On justifiera les réponses.

• 1 pt : Y (Ω) ⊂ [0, 1[

• 1 pt : si y ∈ ]−∞, 0[, alors : [Y 6 y] = ∅ et donc FY (y) = 0

• 1 pt : si y ∈ [1,+∞[, alors : [Y 6 y] = Ω et donc FY (y) = 1

3. Justifier l’égalité entre évènements : [Y = 0] =
⋃
n∈N

[X = n].

En déduire : FY (0) = 0.

• 1 pt : [Y = 0] =
⋃
n∈N

[X = n]

• 1 pt : [Y 6 0] = [Y = 0]

• 1 pt : les événements de la famille
(

[X = n]
)
n∈N sont deux à deux incompatibles

• 1 pt : conclusion avec l’additivité de l’application probabilité et le fait que X est à densité

4. Soit y un réel de l’intervalle ]0, 1[.

a) Montrer l’égalité : FY (y) =
+∞∑
n=0

∫ n+y

n
f(t) dt.

• 1 pt : La famille
(

[T = n]
)
n∈N forme un système complet d’événements, où T = [X]

• 1 pt : par la formule des probabilités totales : FY (y) =
+∞∑
n=0

P
(

[T = n] ∩ [X − T 6 y]
)

• 1 pt : f est une densité de X donc [n 6 X 6 n+ y] =

∫ n+y

n
f(t) dt

• 1 pt : FY (y) =
+∞∑
n=0

∫ n+y

n
f(t) dt sans arnaque

8
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b) Montrer, en utilisant la question préliminaire, les inégalités :

− Pour tout n entier naturel :
∫ n+y

n
f(t) dt > y

∫ n+1

n
f(t) dt.

• 1 pt : vérification des hypothèses pour utiliser la question préliminaire
• 1 pt : calculs corrects (c = n, d = n+ y et b = n+ 1)

− Pour tout n entier naturel non nul :
∫ n+y

n
f(t) dt 6 y

∫ n+y

n−1+y
f(t) dt.

• 1 pt : vérification des hypothèses pour utiliser la question préliminaire
• 1 pt : calculs corrects (a = n− 1 + y et c = n et d = n+ y)

c) En déduire : y
∫ +∞

0
f(t) dt 6 FY (y) 6

∫ y

0
f(t) dt+ y

∫ +∞

y
f(t) dt, puis l’encadrement :

y 6 FY (y) 6 y +M

• 1 pt :
m∑
n=0

∫ n+y

n
f(t) dt > y

∫ m+1

0
f(t) dt

• 1 pt : les deux termes admettent une limite quand m tend vers +∞

• 1 pt : par passage à la limite : y
∫ +∞

0
f(t) dt 6 FY (y)

• 1 pt :
m∑
n=0

∫ n+y

n
f(t) dt−

∫ y

0
f(t) dt 6 y

∫ m+y

y
f(t) dt

• 1 pt : par passage à la limite dans l’inégalité : FY (y) 6
∫ y

0
f(t) dt+ y

∫ +∞

y
f(t) dt

• 1 pt :
∫ +∞

0
f(t) dt = 1

• 1 pt : y
∫ +∞

y
f(t) dt 6 y

• 2 pt :
∫ y

0
f(t) dt 6 M

Partie II - Premier chiffre significatif d’une variable de Pareto

Pour tout réel λ strictement positif, on définit la fonction gλ sur R par gλ : x 7→


λ

xλ+1
si x > 1

0 sinon
.

5. Montrer que pour tout réel λ strictement positif, gλ est une densité de probabilité sur R (loi dite
de Pareto).

• 1 pt : pour tout x ∈ R, gλ(x) > 0

• 1 pt : gλ est continue sur ]−∞, 1[ et sur ]1,+∞[

• 1 pt :
∫ +∞

−∞
gλ(t) dt =

∫ +∞

1
gλ(t) dt car g est nulle en dehors de [1,+∞[

• 1 pt :
∫ +∞

1
gλ(t) dt = 1 (λ > 0 donc λ+ 1 > 1)

Dans toute la suite, on note Zλ une variable aléatoire admettant gλ pour densité.

6. Déterminer la fonction de répartition Gλ de Zλ.

9
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• 1 pt : pour tout x < 1, Gλ(x) = 0

• 1 pt : pour tout x > 1, Gλ(x) = 1− 1
xλ

7. On note ln la fonction logarithme népérien, et log la fonction logarithme décimal.

Cette fonction est définie sur ]0,+∞[ par : log(x) =
ln(x)

ln(10)
pour tout réel x strictement positif.

On pose Xλ = log(Zλ), et on note Fλ la fonction de répartition de Xλ.

a) Établir, pour tout réel x, l’égalité : Fλ(x) = Gλ
(
10x
)
.

• 1 pt : ln(10) > 0

• 1 pt : x ln(10) = ln(10x)

• 1 pt : la fonction exp est strictement croissante sur R

b) En déduire que Xλ suit une loi exponentielle dont on précisera le paramètre en fonction de λ.

• 1 pt : 10x < 1 ⇐⇒ x < 0

• 1 pt : pour tout x > 0, Fλ(x) = 1− e−λ ln(10)x

• 1 pt : Xλ suit une loi exponentielle de paramètre λ ln(10)

8. a) On pose Yλ =
{
Xλ

}
, la partie fractionnaire de Xλ.

Montrer, en utilisant les résultats de la partie I, que pour tout réel y de l’intervalle ]0, 1[ :

lim
λ→0+

P
(

[Yλ 6 y]
)

= y

• 1 pt : la fonction fλ : R→ R définie par

fλ(x) =

{
0 si x < 0

λ ln(10)e−λ ln(10) si x > 0

est une densité de Xλ et vérifie les hypothèses de la partie I

• 1 pt : pour y ∈]0, 1[, on a y 6 FYλ(y) 6 y +Mλ où Mλ = λ ln(10) (maximum de fλ sur R)
• 1 pt : pour y ∈]0, 1[, lim

λ→0+
P
(

[Yλ 6 y]
)

= y par théorème d’encadrement

b) (CUBES UNIQUEMENT) En déduire que, lorsque λ tend vers 0, Yλ converge en loi vers une variable
aléatoire suivant la loi uniforme sur l’intervalle [0, 1].

• 1 pt : pour y > 1, lim
λ→0+

P
(

[Yλ 6 y]
)

= lim
λ→0+

1 = 1

pour y 6 0, lim
λ→0+

P
(

[Yλ 6 y]
)

= lim
λ→0+

0 = 0

9. Pour tout réel x supérieur ou égal à 1, on note α(x) le premier chiffre dans l’écriture décimale de x.
C’est un entier de l’intervalle J1, 9K.
Par exemple, α(50) = 5 et α(213, 43) = 2.

a) Pour tout k ∈ J1, 9K, montrer l’équivalence :

α(x) = k ⇔
{

log(x)
}
∈
[

log(k), log(k + 1)
[

• 1 pt : écriture de x sous la forme x = α(x)10d + r(x) avec r(x) < 10d et d ∈ N
• 2 pt : d = [log(x)]

• 1 pt :
[
10{log(x)}

]
= α(x)
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• 1 pt :
{

log(x)
}
∈
[

log(k), log(k + 1)
[
⇐⇒ k =

[
10{log(x)}

]
b) On note Cλ = α

(
Zλ
)
la variable aléatoire prenant comme valeur le premier chiffre de Zλ.

Montrer, pour tout k ∈ J1, 9K : lim
λ→0+

P
(

[Cλ = k]
)

= log

(
1 +

1

k

)
.

Cette loi limite obtenue pour le premier chiffre de Zλ est appelée loi de Benford.

• 1 pt : [Cλ = k] = [log(k) 6 Yλ < log(k + 1)]

• 1 pt : par convergence en loi : lim
λ→0+

P
(

[Cλ = k]
)

= P
(

[log(k) 6 U < log(k + 1)]
)
où U suit

une loi uniforme sur [0, 1]

• 1 pt : P
(

[log(k) 6 U < log(k + 1)]
)

= log(k + 1) − log(k) = log(1 + 1
k ) car log(k) ∈ [0, 1] et

log(k + 1) ∈ [0, 1]
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