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DS5 baréme (version A)

Probléme 1 (sujet maison)

Partie I : Etude d’une matrice A

2 =2 2
On considére la matrice carrée A = ( 1 1 2 ) .

1. a)

b)

2. a)

b)

-2 0 =3

On exécute le code Python suivant :

import numpy as np

import numpy.linalg as al

A = np.array([[2,-2,2],[1,1,2],[-2,0,-3]1)
print(al.matrix_power(A,3))

s e o =

et on obtient I'affichage :

1 [[ 2 -2 2]
2 [ 1 1 2]
3 [-2 0 -3]]

Traduire ce résultat par une égalité entre deux matrices.

elpt: A=A

En déduire les valeurs propres possibles de A.

e 1pt:P(X)=X>-X=X(X~-1)(X +1) est un polynéme annulateur de A
« 1 pt : Sp(A) C {racines de P(X)}

o 1 pt : les valeurs propres possibles de A sont —1, 0 et 1

Déterminer Sp(A) et une base de chacun des sous-espaces propres de A.

e 2 pts: El(A):Vect< ( ? ) )
)

« 1 pt: E_1(A) # {04, } donc —1 est valeur propre de A

.1pt:]~"1—<< ) est une base de E_;(A)

)
« 1 pt: Eg(A) Vect(( ))
Cpt: B(4) vect<( ))

Démontrer qu'il existe une matrice P € .#3(R) inversible, dont la premiére ligne est (2 3 —2),
et une matrice D € .#3(R) diagonale, dont les coefficients diagonaux sont dans 'ordre croissant,
qui vérifient A = PDP~!. On explicitera les matrices P et D.

e 1 pt : La matrice A est carrée d’ordre 3 et admet trois valeurs propres distinctes
donc A est diagonalisable
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2 3 =2 -1 0 0
elpt: P=| 1 1 0 )JetD=|0 00
-2 =2 1 0 0 1
« 1 pt : Par la formule de changement de base, on a bien A = PDP~!
ou P est obtenue par concaténation des bases des sous-espaces propres

Partie II : Exponentielle d’une matrice carrée

Si (an), (bn), (cn), (dn), (€n), (fn),(gn), (hn), (in) désignent neuf suites convergentes, de limites res-
pectives a,b,c,d, e, f,g,h,i, et si (My,)nen est une suite de matrices de .#3(R) définie par

an bn cn
VneN, M,=|d, e, ful,
n hn in

on dit que la suite de matrices (M, )nen admet une limite coefficient par coefficient, et on le note

a b c a b c

lim M,=1[|d e f ou M, — |d e f
n—+00 . n—+-00 .
g h i g h 1

Si M € .#5(R), on pose, pour tout entier naturel n,
"1
Sn(M) =" ng € M5(R).
k=0

M cette limite.

Lorsque (S, (M))nen admet une limite coefficient par coefficient, on note e

3. Deux résultats théoriques. On utilisera les notations du préambule de la partie II pour les preuves.

a) Soit M € .#5(R) et soit (ay,) une suite réelle convergente, de limite £. Montrer que la suite de
matrices (a, M) admet une limite coefficient par coefficient et que

lim o,M ={M

n—-+00
e 2 pts : calcul correct

b) Soient (M,) et (M]) deux suites de matrices de .#5(R) qui admettent chacune une limite
coefficient par coefficient. On note lim M, = M et lim M) = M’. Montrer que les suites

n—+00 n——+00
de matrices (M, + M}) et (M,M]) admettent chacune une limite coefficient par coefficient et
que
lim (M, + M) =M+M et lim (M,M.)= MM
n—+o00 n—+o00

e 1 pt : calcul correct pour la somme

e 2 pts : calcul correct pour le produit

Les candidat-es devront référer précisément a ces questions lorsque ces résultats seront utilisés.

a 0 0 e 0 0
4. Montrer que, siD= |0 b 0], alors e existe et vaut e? = [ 0 e¢® 0
0 0 ¢ 0 0 e
Ainsi, on a montré que ’exponentielle d’une matrice diagonale est une matrice diagonale.
a* 0 0
elpt:DE=[0 b 0
0 0 c*
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n
> oma® 0 0
k=0
« 1pt: Sy(D)= 0 >oabh 0
k=0
n
0 0 >k
k=0
o 1 pt : reconnaissance des sommes partielles de séries exponentielles
011
5. Dans cette question uniquement, la matrice M est donnée par M = |0 0 1
0 0O
a) Calculer M? et M3. En déduire la matrice M* pour tout entier naturel k.
0 1 1 011 0 01
elpt:M?>=(0 0 1 0 0 1)]=100
0 00 0 00 0 00
0 0 1 011 0 00
elpt:M3=(0 0 O 0 01]=10 00
0 00 0 00 0 00

o 1 pt : synthése

b) Donner, pour tout entier n supérieur ou égal a 2, 'expression de S, (M ). En déduire 'existence

et expression de la matrice eM.
113

e 2pts: S, (M)=[0 1 1
0 0 1

« 1 pt: eM existe et eM =

S O =
[
— =W

6. Dans cette question uniquement, la matrice M est donnée par M =

—_ = =
= = =
—_ = =

a) Calculer M? et M3 en fonction de M.
e 1pt: M?>=3M
e 1pt: M3=32M

b) Soit k& € N*. Conjecturer une formule simple pour I'expression de M¥ puis la démontrer par
récurrence.

« 1 pt : conjecture, pour tout k € N*, M* = 3k—1)f
o 1 pt : initialisation
o 1 pt : hérédité

¢) Soit n € N. Montrer que :

e 2 pts : calcul

d) En déduire que eM existe et que :
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nook
.1pt:§<2‘z!—1> — %(e?’—l)

n
« 1 pt : d’aprés la question 3.a), % (Z %If — 1> M — '333—_1M
k=0

n—-+00o

n—-+00

n
« 1 pt : d’aprés la question 3.b), S, (M) = I+% (E %’T — 1) M — I+ ESS_IM
k=0

7. Dans cette question, on considére la matrice A de la Partie I et on réutilise les notations de la
question 2.5). On fixe un réel ¢.

a) Montrer que, pour tout n € N :
S, (tA) = PS,(tD)P~!

e« 1 pt: A= PDP~!. On en déduit par récurrence immédiate que, pour tout k € N,
AF = ppkp-t
e 1 pt: S,(tA) = PS,(tD)P~!

A

b) Conclure que et existe et en donner une expression sous la forme et4 = PA(t)P~1.

On explicitera la matrice A(t) sous forme de tableau matriciel en fonction de t.

« 1 pt : D’aprés la question 4, la matrice e'” existe et vaut
et 0 0 et 0 0
eP=[0 e o]=10 10
0 0 e 0 0 e

o 1 pt : D’aprés la question 3.b) et la question précédente, on a alors

S, (tA) = PS,(tD)P~! — PpetPpt

n—-+o0o

« 1 pt : e existe et e = PA(t)P~! avec

En généralisant ce résultat, on montre alors que l’exponentielle d’une matrice diagonalisable est une
matrice diagonalisable (on ne demande pas de le faire).

Partie III : Etude d’un systéme différentiel linéaire

On considére le systéme différentiel linéaire suivant :

) = 2z@) — 2y() + 2z2(¢)
(9):q ¥ = @) + wt) + 2z(1)
Z(t) = —2zx(t) — 3z(t)

X

(t)
ot les inconnues x, , z sont des fonctions de classe C! sur R. Pour tout ¢ € R, on pose X (t) = (y(t) .
z(t)

On a alors :
(9) & X'=AX
ou A est la matrice étudiée dans la partie I.

8. Déterminer I'ensemble des états d’équilibre du systéme différentiel linéaire (5).
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e 1 pt: (u,v,w) est un état d’équilibre de (S) <= (

« 1 pt : ’ensemble des états d’équilibre de (S) est

Vect ((3,1,

u

1)) S Eo(A)

-2))={A(3,1,-2) | A e R}

9. Soit tp € R et soient X et Y deux solutions de (5). On suppose que X (o) = Y (t). Que peut-on

en déduire sur X et Y ?

e 1 pt: X et Y sont solutions du méme probléme de Cauchy

e 1 pt : tout probléme de Cauchy admet une unique solution donc X =Y

10. Justifier que l’ensemble des solutions de (5) est :

{t > ae™'U_1 + BUy +7e'U1 | (a, B,7) € R?}

2 3 -2
onU_1=|(1]|,Uy= 1 eteUy=1(0|.
-2 -2 1

« 1 pt : La matrice A est diagonalisable (cf question 2.b))

« 1 pt : on a montré a la question 2.a) que (U_1, Uy, U;) est une base de .#31(R) formée

de vecteurs propres de A

11. On considére dans cette question deux problémes de Cauchy :

X' = AX

= ©

a) i) Déterminer 'unique solution du probléme de Cauchy (P;), que 'on notera X;.

2c
e 1 pt : écriture correcte du systéme a

—2«

9 (6]
.lpt:OéUl—i-BUo—i-’yUl:(él) <=
-8

6e ! +3
e« 1pt: Xl(t) = 3e_tU,1 +Up=| 3et+1
—6et—2

+386 —2v=9

+ B =4

-2 + y=-8
=3

I6; =1
v=0

#i) Montrer que la trajectoire associée & la solution X; est convergente. Expliciter le point
limite (41,42, ¢3). Quelle propriété posséde ce point limite vis-a-vis du systéme différentiel

linéaire (5) 7

e 1 pt: xi(t) e 3, y1(t) e 1 et z(t) e —2. Ainsi la trajectoire associée a

la solution X; est convergente, de point limite (¢1,/2,/¢3) = (3,1,—2)

e 1 pt : d’aprés la question 9, ce point limite est un état d’équilibre du systéme

différentiel (5)

b) i) Déterminer I'unique solution du probléme de Cauchy (P2), que 'on notera Xs.
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2 +38 —2y=3
e 1 pt : écriture correcte du systéme a + B =2
—2a —-28 4+ v=-3

3 « =
.1pt:aU1+BUo+'yU1:(2) <= I} =1
-3 7_1
2et 43— 2¢!
e 1 pt: Xo(t)=e 'U_1 +Uy+ellU; = et +1
—2et—24+¢t

#) Montrer que la trajectoire associée a la solution X5 est divergente.

o 1 pt: 29(¢) t—+> +o00. La trajectoire associée a la solution X5 est divergente.
—+00

c) On a représenté page suivante les tracés de 4 solutions du systéme différentiel linéaire (S). Dire

quels sont les tracés associés aux solutions X7 et Xo étudiées ci-dessus. On justifiera les réponses.

« 1 pt : La figure 4 est la seule ou ’on a z(t) t—+> +o00. Ainsi, cette figure correspond
—+00
nécessairement a la solution X5.

« 2 pts : Dans la figure 3, on a z(¢) tT —o00. Donc cette figure correspond a une
—+00

trajectoire divergente. Ainsi, cette figure ne correspond pas a la solution Xj.

. L L B Y
Dans la figure 1, on a tl>1+moo x(t) = tl}inoo y(t) = tl>1+moo z(t) = 0. Cette propriété n’est

pas vérifiée par la solution X; donc cette figure ne correspond pas a Xj.

Par élimination, la figure 2 correspond a la solution X;. De plus, en lisant approxi-

mativement les valeurs limites sur le graphe, le tracé est cohérent avec le fait que
1et —2.

z1(?) t—:)oo 3 1(?) t:oo et z1(1) M

—+00

12. Dans cette question, on souhaite faire le lien entre la résolution d’un systéme différentiel linéaire
(homogeéne) et ’exponentielle de matrice introduite a la partie II.

a) On fixe (o, 8,7) € R? et on considére la solution de (S) :

X it ae”tU_1 + pUy + 7€'y

(0%

On pose C' = P ([3) € AM31(R) (ou P est définie & la question 2.b)).
v

Montrer que, pour tout t € R, X (t) = e*C.

e 2 pts : calcul correct

b) Commenter le résultat obtenu a la question précédente, au regard des résultats du cours sur les

équations différentielles linéaires du premier ordre & coefficient constant.

o 1 pt : la formule obtenue est analogue
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Probléme 2 - Une propriété limite des lois de Pareto (ESSEC I 2011)

Question préliminaire
Soit g une fonction continue sur un intervalle I, & valeurs réelles.

1. a) Montrer que pour tout « et 5 dans [ tels que e < 3 :

1P !
/ g(t) dt = / g(a+ (B —a)z) dx
B —a Jq 0
B
e 1 pt : g est continue sur 'intervalle I donc 'intégrale / g(t) dt est bien définie
o
. 1 «@
e 1 pt : On effectue le changement de variable | =z = t—
0 —« 0 —«

« 1 pt : Ce changement de variable est valide car ¢ : x +— (3 —a) z+ « est de classe C! sur [0, 1]

b) Soit a, b, ¢, d dans I tels que a < ¢ < d < b.
On suppose g décroissante sur I, établir 'encadrement :

I 1 1
bc/c g(t)dtédc/c g(t)dtéda/a g(t) dt
e 1 pt : mise sous forme normale en vérifiant les hypothéses de la question 1
e 1pt:Vze(0,1], glc+(d—c)z) > glc+(b—c) z)

e« 1 pt : D’aprés ce qui précéde, par croissance de l'intégrale, les bornes étant dans l'ordre
1

1
croissant (0 < 1) : /0 glc+(d—c) z) da 2/0 g(c+(b—c) z) do
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e 1pt:Vzel0,1], glat(d—a)z) = g(c+(d—c) )

e« 1 pt : D’aprés ce qui précéde, par croissance de l'intégrale, les bornes étant dans l'ordre

1
croissant (0 < 1) : /0 gla+(d—a)z) de 2/0 g(c+(d—c) z) dz

Partie I - Partie fractionnaire d’une variable a densité

o Pour tout réel z positif ou nul :

— on note [z] la partie entiére de z. On rappelle qu’il s’agit de 'unique entier naturel n qui vérifie
l'encadrement : n <z <n-+ 1.

— on note {x} =z — [z], que l'on appelle la partie fractionnaire de x.
Par exemple, si x = 12,34, alors [z] = 12 et {z} =0, 34.
o Dans cette partie, X désigne une variable aléatoire & valeurs réelles admettant une densité f qui
vérifie les propriétés :
— f est nulle sur | — oo, 0[;
— la restriction de f a [0, +o00] est continue et décroissante.

On pose M = f(0), c’est le maximum de f sur R.

Soit Y = {X} =X — [X}, la variable aléatoire égale a la partie fractionnaire de X.
On note Fy la fonction de répartition de Y.

2. Que vaut Fy (y) lorsque y < 07 Que vaut Fy (y) lorsque y > 17
On justifiera les réponses.

« 1 pt:Y(Q)C0,1]
e 1 pt:siye]—o00,0[,alors: [Y <y] =2 et donc Fy(y) =0
e 1 pt:siyell,+oof,alors: [Y < y] =Q et donc Fy(y) =1

3. Justifier I'égalité entre événements : [Y =0] = |J [X =n].
En déduire : F3(0) = 0.

S pti Y =0 = U [X=u

e 1 pt:[Y <0]=[Y =0]

« 1 pt : les événements de la famille ([X = n]) sont deux a deux incompatibles

neN
o 1 pt : conclusion avec 'additivité de ’application probabilité et le fait que X est a densité

4. Soit y un réel de l'intervalle |0, 1].

+oo Nty
a) Montrer I'égalité : Fy (y) = Zo f(t) dt.

n

« 1 pt : La famille ([T =n]) forme un systéme complet d’événements, ou 7' = [X]

neN
+oo

« 1 pt : par la formule des probabilités totales : Fy (y) = > P([T =n]N[X —T < y])
n=0

n+y
e 1 pt: f est une densité de X donc [n < X < n+y] :/ f(t) dt
n
oo [nty
e 1 pt: Fy(y)= > f(t) dt sans arnaque
n=0

n
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b) Montrer, en utilisant la question préliminaire, les inégalités :
n+1

— Pour tout n entier naturel : / ft) dt > y/ f(t) dt.

n n

n+y

o 1 pt : vérification des hypothéses pour utiliser la question préliminaire
o 1 pt: calculs corrects (c=n,d=n+yetb=n+1)

n+y n+y

fa<y [ s

— Pour tout n entier naturel non nul : /
n—1+y

n
o 1 pt : vérification des hypothéses pour utiliser la question préliminaire

« 1 pt : calculs corrects (a =n—1+yetc=netd=n+y)
+00 Y +00
¢) En déduire : y/ f(t) dt < Fy(y) < / f(t) dt + y/ f(t) dt, puis I'encadrement :
0 0 Y

y< Fy(y) <y+M

n+y

m m+1
«1pt: 20 ft) dt =y /0 f(t) dt

e 1 pt : les deux termes admettent une limite quand m tend vers +oo

n

“+oo
o 1 pt : par passage a la limite : y / f(t) dt < Fy(y)
0

n

m +y Y m4y
. 1pt: ngo f(®) dt—/o f(t) dt <y /y F(t) dt

n

v +oo
« 1 pt : par passage a la limite dans U'inégalité : Fy(y) < / f(t) dt+y / f(t) dt
0 y
+oo
. lpt:/ £#) dt =1
0
+oo
y / f@)dt <y
y
y
. 2pt:/ fO)dt < M
0

Partie II - Premier chiffre significatif d’une variable de Pareto

—— siz>1
Pour tout réel X strictement positif, on définit la fonction gy sur R par gy : x — aA g
0 sinon

5. Montrer que pour tout réel A strictement positif, g\ est une densité de probabilité sur R (loi dite
de Pareto).

o 1 pt : pour tout x € R, gx(x) >0

o 1 pt : gy est continue sur | — oo, 1] et sur |1, 4o0|

+oo +o00
« 1pt: / ga(t) dt :/ gxa(t) dt car g est nulle en dehors de [1, +o0|
1

+oo
.1pt:/ gr(t) dt=1(A>0donc A+1>1)
1

Dans toute la suite, on note Z) une variable aléatoire admettant g, pour densité.

6. Déterminer la fonction de répartition G de Zy.




E2A 24 janvier 2026
Mathématiques

e 1 pt : pour tout x < 1, Gy(z) =0
1

o 1 pt: pour tout x > 1, Gy(z) =

&)

7. On note In la fonction logarithme népérien, et log la fonction logarithme décimal.

In(z)
In(10)

On pose X = log(Zy), et on note F la fonction de répartition de X.

Cette fonction est définie sur |0, +oo] par : log(z) = pour tout réel x strictement positif.

a) Etablir, pour tout réel z, I'égalité : Fi(z) = G (107).
e 1 pt:In(10) >0
e 1 pt: zIn(10) = In(10%)
« 1 pt : la fonction exp est strictement croissante sur R
b) En déduire que X suit une loi exponentielle dont on précisera le paramétre en fonction de .
e 1pt:10°<1 <= <0
« 1 pt : pour tout z > 0, Fy(z) = 1 — e 10(10)z
« 1 pt : X suit une loi exponentielle de paramétre \1n(10)

8. a) On pose Yy = {X,\}, la partie fractionnaire de X.

Montrer, en utilisant les résultats de la partie I, que pour tout réel y de l'intervalle |0, 1] :

lim P([Ya<y])=vy

A—01

o 1 pt : la fonction f) : R — R définie par

fA(x):{o siz <0

Aln(10)e= 210 i g >0

est une densité de X et vérifie les hypothéses de la partie I
e 1 pt: pour y €]0,1[, on a y < Fy, (y) <y + M) ot My = AIn(10) (maximum de f) sur R)
« 1 pt: pour y €0, 1], lim+ P( Yy < ] ) = y par théoréme d’encadrement
A—=0

b) (CUBES UNIQUEMENT) En déduire que, lorsque A tend vers 0, Y) converge en loi vers une variable
aléatoire suivant la loi uniforme sur U'intervalle [0, 1].
e 1 pt:poury>1, lim P([Y) < = lim 1=1
pt : poury > 1, lim P([YA <y]) = lim
pour y < 0, lim P([YA <y]) = lim 0=0
A—0F A—=07F

9. Pour tout réel z supérieur ou égal a 1, on note a(z) le premier chiffre dans I’écriture décimale de x.
C’est un entier de l'intervalle [1, 9].

Par exemple, «(50) = 5 et «(213,43) = 2.

a) Pour tout k € [1,9], montrer I’équivalence :
a(z) =k & {log(z)} € [log(k),log(k +1)[

« 1 pt : écriture de z sous la forme = a(x)10¢ 4 r(z) avec r(z) < 10% et d € N
e 2 pt:d=log(z)]
e« 1pt: [10{log(x)}] = a(z)

10
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e 1pt: {log(:r)} IS [log(k),log(k + 1)[ — k= [10{10g($)}]

b) On note C) = a(Z )\) la variable aléatoire prenant comme valeur le premier chiffre de Z).

1
Montrer, pour tout k € [[1,9] : )\lim+ P([C\=k]) =log (1 + k)
—0

Cette loi limite obtenue pour le premier chiffre de Z) est appelée loi de Benford.
e 1 pt: [Cy=k|=[log(k) <Y\ <log(k+1)]
« 1 pt : par convergence en loi : )\lim+ P([Cx =k]) =P([log(k) < U <log(k+1)]) ou U suit
—0
une loi uniforme sur [0, 1]

« 1 pt : P([log(k) < U <log(k +1)]) = log(k + 1) — log(k) = log(1 + #) car log(k) € [0,1] et
log(k +1) € [0,1]

11



