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DS5 correction (version B)

Problème 1 (sujet maison)

Partie I : Etude d’une matrice A

On considère la matrice carrée A =

 2 −2 2
1 1 2
−2 0 −3

.
1. a) On exécute le code Python suivant :

1 import numpy as np
2 import numpy.linalg as al
3 A = np.array([[2,-2,2],[1,1,2],[-2,0,-3]])
4 print(al.matrix_power(A,3))

et on obtient l’affichage :

1 [[ 2 -2 2]
2 [ 1 1 2]
3 [-2 0 -3]]

Traduire ce résultat par une égalité entre deux matrices.

Démonstration. D’après l’affichage Python : A3 = A .

b) En déduire les valeurs propres possibles de A.

Démonstration. D’après la question précédente, le polynôme P (X) = X3 −X est un polynôme
annulateur de A. Or,

P (X) = X(X2 − 1) = X(X − 1)(X + 1)

On en déduit que
Sp(A) ⊂ {racines de P (X)} = {−1, 0, 1}

Ainsi, les valeurs propres possibles de A sont −1, 0 et 1 .
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2. a) Déterminer Sp(A) et une base de chacun des sous-espaces propres de A.

Démonstration. Soit U =

 x
y
z

 ∈M3,1(R).

•

U ∈ E−1(A) ⇐⇒ (A+ I)U = 0M3,1(R)

⇐⇒

 3 −2 2
1 2 2
−2 0 −2

xy
z

 =

 0
0
0



⇐⇒


3x− 2y + 2z = 0

x+ 2y + 2z = 0

−2x − 2z = 0

⇐⇒


3x− 2y + 2z = 0

x+ 2y + 2z = 0

x + z = 0 L3 ←− −1
2L3

⇐⇒


3x− 2y + 2z = 0

8y + 4z = 0 L3 ←− 3L2 − L1

2y + z = 0 L3 ←− 3L3 − L1

⇐⇒

{
3x− 2y + 2z = 0

2y + z = 0

⇐⇒

{
3x− 2y = −2z

2y = −z

⇐⇒

{
3x = −3z L1 ←− L1 + L2

2y = −z

⇐⇒

{
x = −z

y = −1
2z

On en déduit que

E−1(A) =

{  x
y
z

 ∈M3,1(R) | x = −z et y = −1

2
z

}

=

{  −z
−1

2z
z

 ∈M3,1(R) | z ∈ R

}

= Vect

(  −1
−1

2
1


)

= Vect

(  2
1
−2


)

E−1(A) 6= {0M3,1(R)} donc −1 est valeur propre de A. De plus, la famille F−1 =

(  2
1
−2


)

:

— engendre E−1(A)

— est libre car constituée d’un unique vecteur non nul
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donc F−1 est une base de E−1(A) .

•

U ∈ E0(A) ⇐⇒ AU = 0M3,1(R)

⇐⇒

 2 −2 2
1 1 2
−2 0 −3

xy
z

 =

 0
0
0



⇐⇒


2x− 2y + 2z = 0

x+ y + 2z = 0

−2x − 3z = 0

⇐⇒


x− y + z = 0

x+ y + 2z = 0

−2x − 3z = 0

⇐⇒


x− y + z = 0

2y + z = 0 L2 ←− L2 − L1

− 2y − z = 0 L3 ←− L3 + 2L1

⇐⇒

{
x− y + z = 0

2y + z = 0

⇐⇒

{
x− y = −z

2y = −z

⇐⇒

{
2x = −3z L1 ←− 2L1 + L2

2y = −z

⇐⇒

{
x = −3

2z

y = −1
2z

On en déduit que

E0(A) =

{  x
y
z

 ∈M3,1(R) | x = −3

2
z et y = −1

2
z

}

=

{  −3
2z
−1

2z
z

 ∈M3,1(R) | z ∈ R

}

= Vect

(  −3
2
−1

2
1


)

= Vect

(  3
1
−2


)

E0(A) 6= {0M3,1(R)} donc 0 est valeur propre de A. De plus, la famille F0 =

(  3
1
−2


)

:

— engendre E0(A)

— est libre car constituée d’un unique vecteur non nul

donc F0 est une base de E0(A) .
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•

U ∈ E1(A) ⇐⇒ (A− I)U = 0M3,1(R)

⇐⇒

 1 −2 2
1 0 2
−2 0 −4

xy
z

 =

 0
0
0



⇐⇒


x− 2y + 2z = 0

x + 2z = 0

−2x − 4z = 0

⇐⇒

{
x− 2y + 2z = 0

x + 2z = 0

⇐⇒

{
x− 2y + 2z = 0

2y = 0 L3 ←− L3 − L1

⇐⇒

{
x = −2z

y = 0

On en déduit que

E1(A) =

{  x
y
z

 ∈M3,1(R) | x = −2z et y = 0

}

=

{  −2z
0
z

 ∈M3,1(R) | z ∈ R

}

= Vect

(  −2
0
1


)

E1(A) 6= {0M3,1(R)} donc 1 est valeur propre de A. De plus, la famille F1 =

(  −2
0
1


)

:

— engendre E1(A)

— est libre car constituée d’un unique vecteur non nul

donc F1 est une base de E1(A) .

Les valeurs propres possibles de A sont −1, 0, 1 et on a vérifié que chacune d’elles est une valeur
propre de A. Donc

Sp(A) = {−1, 0, 1}

b) Démontrer qu’il existe une matrice P ∈M3(R) inversible, dont la première ligne est
(
2 3 −2

)
,

et une matrice D ∈M3(R) diagonale, dont les coefficients diagonaux sont dans l’ordre croissant,
qui vérifient A = PDP−1. On explicitera les matrices P et D.

Démonstration. La matrice A est carrée d’ordre 3 et admet trois valeurs propres distinctes donc
A est diagonalisable. Ainsi, il existe

• une matrice P ∈M3(R) inversible, obtenue en concaténant les bases des sous-espaces propres
de A
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• une matrice D ∈M3(R) diagonale, dont les coefficients diagonaux sont les valeurs propres de
A

telles que A = PDP−1.

On pose alors P =

 2 3 −2
1 1 0
−2 −2 1

 et D =

−1 0 0
0 0 0
0 0 1

. Par la formule de changement de

base, on a bien A = PDP−1.

Partie II : Exponentielle d’une matrice carrée

Si (an) , (bn) , (cn) , (dn) , (en) , (fn) , (gn) , (hn) , (in) désignent neuf suites convergentes, de limites res-
pectives a, b, c, d, e, f, g, h, i, et si (Mn)n∈N est une suite de matrices de M3(R) définie par

∀n ∈ N, Mn =

an bn cn
dn en fn
gn hn in

 ,

on dit que la suite de matrices (Mn)n∈N admet une limite coefficient par coefficient, et on le note

lim
n→+∞

Mn =

a b c
d e f
g h i

 ou Mn −→
n→+∞

a b c
d e f
g h i


Si M ∈M3(R), on pose, pour tout entier naturel n,

Sn(M) =

n∑
k=0

1

k!
Mk ∈M3(R).

Lorsque (Sn(M))n∈N admet une limite coefficient par coefficient, on note eM cette limite.

3. Deux résultats théoriques. On utilisera les notations du préambule de la partie II pour les preuves.
a) Soit M ∈M3(R) et soit (αn) une suite réelle convergente, de limite `. Montrer que la suite de

matrices (αnM) admet une limite coefficient par coefficient et que

lim
n→+∞

αnM = `M

Démonstration. Soit M =

a b c
d e f
g h i

 ∈M3(R). Soit n ∈ N.

αnM = αn

a b c
d e f
g h i


=

αna αnb αnc
αnd αne αnf
αng αnh αni

 −→
n→+∞

`a `b `c
`d `e `f
`g `h `i

 = `

a b c
d e f
g h i

 = `M

b) Soient (Mn) et (M ′n) deux suites de matrices de M3(R) qui admettent chacune une limite
coefficient par coefficient. On note lim

n→+∞
Mn = M et lim

n→+∞
M ′n = M ′. Montrer que les suites

de matrices (Mn + M ′n) et (MnM
′
n) admettent chacune une limite coefficient par coefficient et

que
lim

n→+∞
(Mn +M ′n) = M +M ′ et lim

n→+∞
(MnM

′
n) = MM ′
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Démonstration. Soit n ∈ N.
•

Mn +M ′n =

an bn cn
dn en fn
gn hn in

+

a′n b′n c′n
d′n e′n f ′n
g′n h′n i′n


=

an + a′n bn + b′n cn + c′n
dn + d′n en + e′n fn + f ′n
gn + g′n hn + h′n in + i′n


−→

n→+∞

a+ a′ b+ b′ c+ c′

d+ d′ e+ e′ f + f ′

g + g′ h+ h′ i+ i′

 = M +M ′

•

MnM
′
n =

an bn cn
dn en fn
gn hn in

a′n b′n c′n
d′n e′n f ′n
g′n h′n i′n


=

ana′n + bnd
′
n + cng

′
n anb

′
n + bne

′
n + cnh

′
n anc

′
n + bnf

′
n + cni

′
n

dna
′
n + end

′
n + fng

′
n dnb

′
n + ene

′
n + fnh

′
n dnc

′
n + enf

′
n + fni

′
n

gna
′
n + hnd

′
n + ing

′
n gnb

′
n + hne

′
n + inh

′
n gnc

′
n + hnf

′
n + ini

′
n


−→

n→+∞

aa′ + bd′ + cg′ ab′ + be′ + ch′ ac′ + bf ′ + ci′

da′ + ed′ + fg′ db′ + ee′ + fh′ dc′ + ef ′ + fi′

ga′ + hd′ + ig′ gb′ + he′ + ih′ gc′ + hf ′ + ii′

 = MM ′

Les candidat·es devront référer précisément à ces questions lorsque ces résultats seront utilisés.

4. Montrer que, si D =

a 0 0
0 b 0
0 0 c

, alors eD existe et vaut eD =

ea 0 0
0 eb 0
0 0 ec

.

Ainsi, on a montré que l’exponentielle d’une matrice diagonale est une matrice diagonale.

Démonstration. Soit k ∈ N. La matrice D étant diagonale, on a

Dk =

ak 0 0
0 bk 0
0 0 ck


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Soit n ∈ N.

Sn(D) =
n∑
k=0

1

k!
Dk

=
n∑
k=0

1

k!

ak 0 0
0 bk 0
0 0 ck


=

n∑
k=0

 1
k!a

k 0 0
0 1

k!b
k 0

0 0 1
k!c

k



=



n∑
k=0

1
k!a

k 0 0

0
n∑
k=0

1
k!b

k 0

0 0
n∑
k=0

1
k!c

k


−→

n→+∞

ea 0 0
0 eb 0
0 0 ec


en reconnaissant des sommes partielles de séries exponentielles. Ainsi,

eD existe et eD =

ea 0 0
0 eb 0
0 0 ec



5. Dans cette question uniquement, la matrice M est donnée par M =

0 1 1
0 0 1
0 0 0

.

a) Calculer M2 et M3. En déduire la matrice Mk pour tout entier naturel k.

Démonstration. On a

M2 =

0 1 1
0 0 1
0 0 0

0 1 1
0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0


et

M3 =

0 0 1
0 0 0
0 0 0

0 1 1
0 0 1
0 0 0

 =

0 0 0
0 0 0
0 0 0


Pour tout k > 3, Mk = M3Mk−3 = 0M3(R)M

k−3 = 0M3(R). Finalement,
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Pour tout k ∈ N, Mk =



1 0 0

0 1 0

0 0 1

 si k = 0

0 1 1

0 0 1

0 0 0

 si k = 1

0 0 1

0 0 0

0 0 0

 si k = 2

0M3(R) si k > 3

b) Donner, pour tout entier n supérieur ou égal à 2, l’expression de Sn(M). En déduire l’existence
et l’expression de la matrice eM .

Démonstration. Soit n ∈ N tel que n > 2.

Sn(M) =
n∑
k=0

1

k!
Mk

=
2∑

k=0

1

k!
Mk +

n∑
k=3

1

k!
Mk par Chasles, car n > 2

=
2∑

k=0

1

k!
Mk car Mk = 0M3(R) si k > 3

=

1 0 0
0 1 0
0 0 1

+

0 1 1
0 0 1
0 0 0

+
1

2

0 0 1
0 0 0
0 0 0


=

1 1 3
2

0 1 1
0 0 1


Ainsi, la suite (Sn(M)) est constante à partir du rang 2. On en déduit que

Sn(M) −→
n→+∞

1 1 3
2

0 1 1
0 0 1


donc

eM existe et eM =

1 1 3
2

0 1 1
0 0 1



6. Dans cette question uniquement, la matrice M est donnée par M =

1 1 1
1 1 1
1 1 1

.

a) Calculer M2 et M3 en fonction de M .
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Démonstration. On a

M2 =

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

 =

3 3 3
3 3 3
3 3 3

 = 3M

et
M3 = M2M = (3M)M = 3M2 = 3(3M) = 32M

b) Soit k ∈ N∗. Conjecturer une formule simple pour l’expression de Mk puis la démontrer par
récurrence.

Démonstration. D’après la question précédente, on conjecture que Mk = 3k−1M pour tout
k ∈ N∗.
Montrons par récurrence : ∀k ∈ N∗, P(k)

où P(k) : «Mk = 3k−1M ».
Initialisation :
D’une part, M1 = M . D’autre part, 31−1M = 30M = M . D’où P(1).
Hérédité :
Soit k ∈ N∗. On suppose P(k). Montrons P(k + 1).

Mk+1 = MMk

= M(3k−1M) par hypothèse de récurrence

= 3k−1M2

= 3k−1(3M) cf la question 6.a)

= 3kM

D’où P(k + 1).

Par principe de récurrence, on a montré que pour tout k ∈ N∗, Mk = 3k−1M .

c) Soit n ∈ N. Montrer que :

Sn(M) = I +
1

3

(
n∑
k=0

3k

k!
− 1

)
M

Démonstration. Soit n ∈ N∗.

Sn(M) =
n∑
k=0

1

k!
Mk

= M0 +
n∑
k=1

1

k!
Mk par Chasles, car n > 1

= I +
n∑
k=1

1

k!
3k−1M

= I +
1

3

n∑
k=1

1

k!
3kM

= I +
1

3

(
n∑
k=0

3k

k!
− 30

0!

)
M

= I +
1

3

(
n∑
k=0

3k

k!
− 1

)
M

Vérifions que cette égalité est valable pour n = 0.
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• D’une part, S0(M) =
0∑

k=0

1
k!M

k = 1
0!M

0 = I

• D’autre part, I + 1
3

(
0∑

k=0

3k

k! − 1

)
M = I + 1

3 (1− 1)M = I

D’où l’égalité pour tout entier n ∈ N.

d) En déduire que eM existe et que :

eM = I +
e3 − 1

3
M

Démonstration. On reconnaît une somme partielle de série exponentielle, d’où

1

3

(
n∑
k=0

3k

k!
− 1

)
−→

n→+∞

1

3

(
e3 − 1

)
D’après la question 3.a),

1

3

(
n∑
k=0

3k

k!
− 1

)
M −→

n→+∞

e3 − 1

3
M

puis, d’après la question 3.b),

Sn(M) = I +
1

3

(
n∑
k=0

3k

k!
− 1

)
M −→

n→+∞
I +

e3 − 1

3
M

Donc

eM existe et eM = I + e3−1
3 M .

7. Dans cette question, on considère la matrice A de la Partie I et on réutilise les notations de la
question 2.b). On fixe un réel t.

a) Montrer que, pour tout n ∈ N :
Sn(tA) = PSn(tD)P−1

Démonstration. D’après la question 2.b), A = PDP−1. On en déduit par récurrence immédiate
que, pour tout k ∈ N, Ak = PDkP−1. Soit n ∈ N,

Sn(tA) =
n∑
k=0

1

k!
(tA)k

=
n∑
k=0

tk

k!
Ak

=
n∑
k=0

tk

k!
PDkP−1

= P

(
n∑
k=0

tk

k!
Dk

)
P−1

= P

(
n∑
k=0

1

k!
(tD)k

)
P−1

= PSn(tD)P−1
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b) Conclure que etA existe et en donner une expression sous la forme etA = P∆(t)P−1.
On explicitera la matrice ∆(t) sous forme de tableau matriciel en fonction de t.

Démonstration. On remarque que la matrice tD est diagonale et, plus précisément,

tD =

−t 0 0
0 0 0
0 0 t


D’après la question 4 , la matrice etD existe et vaut

etD =

e−t 0 0
0 e0 0
0 0 et

 =

e−t 0 0
0 1 0
0 0 et


Ceci veut exactement dire que

Sn(tD) −→
n→+∞

e−t 0 0
0 1 0
0 0 et

 (1)

D’après la question 3.b) et la question précédente, on a alors

Sn(tA) = PSn(tD)P−1 −→
n→+∞

P etDP−1

On en déduit que etA existe et etA = P∆(t)P−1 avec

∆(t) = etD =

e−t 0 0
0 1 0
0 0 et



En généralisant ce résultat, on montre alors que l’exponentielle d’une matrice diagonalisable est une
matrice diagonalisable (on ne demande pas de le faire).

Partie III : Etude d’un système différentiel linéaire

On considère le système différentiel linéaire suivant :

(S) :


x′(t) = 2x(t) − 2y(t) + 2z(t)
y′(t) = x(t) + y(t) + 2z(t)
z′(t) = −2x(t) − 3z(t)

où les inconnues x, y, z sont des fonctions de classe C1 sur R. Pour tout t ∈ R, on pose X(t) =

x(t)
y(t)
z(t)

.
On a alors :

(S) ⇐⇒ X ′ = AX

où A est la matrice étudiée dans la partie I.

8. Déterminer l’ensemble des états d’équilibre du système différentiel linéaire (S).

11



E2A 24 janvier 2026
Mathématiques

Démonstration. Soit (u, v, w) ∈ R3.

(u, v, w) est un état d’équilibre de (S) ⇐⇒ A

uv
w

 = 0M3,1(R)

⇐⇒

 2 −2 2
1 1 2
−2 0 −3

uv
w

 =

0
0
0


⇐⇒

uv
w

 ∈ E0(A)

⇐⇒

uv
w

 ∈ Vect

(  3
1
−2


)

cf question 2.a)

On en déduit que l’ensemble des états d’équilibre de (S) est

Vect ((3, 1,−2)) = {λ(3, 1,−2) | λ ∈ R}

9. Soit t0 ∈ R et soient X et Y deux solutions de (S). On suppose que X(t0) = Y (t0). Que peut-on
en déduire sur X et Y ?

Démonstration. Notons W = X(t0) = Y (t0). Sous ces hypothèses, X et Y sont deux solutions du
même problème de Cauchy :

(P) :

{
Z ′(t) = AZ(t)

Z(t0) = W
, d’inconnue Z

Or, tout problème de Cauchy admet une unique solution. On en déduit que X = Y , i.e. pour tout
t ∈ R, X(t) = Y (t).

10. Justifier que l’ensemble des solutions de (S) est :{
t 7→ αe−tU−1 + βU0 + γetU1 | (α, β, γ) ∈ R3

}
où U−1 =

 2
1
−2

, U0 =

 3
1
−2

 et U1 =

−2
0
1

.
Démonstration. La matrice A est diagonalisable (cf question 2.b)) et on a montré à la question
2.a) que (U−1, U0, U1) est une base de M3,1(R) formée de vecteurs propres de A. D’après le cours,
les solutions de (S) sont toutes de la forme

X(t) = αe−tU−1 + βe0tU0 + γetU1

= αe−tU−1 + βU0 + γetU1

où (α, β, γ) ∈ R3.

11. On considère dans cette question deux problèmes de Cauchy :

(P1) :


X ′ = AX

X(0) =

 9

4

−8

 et (P2) :


X ′ = AX

X(0) =

 3

2

−3


12
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a) i) Déterminer l’unique solution du problème de Cauchy (P1), que l’on notera X1.

Démonstration. On considère une solution X quelconque de (S) :

X(t) = αe−tU−1 + βU0 + γetU1

X est solution de (P1) ⇐⇒ X(0) =

 9
4
−8


⇐⇒ αU−1 + βU0 + γU1 =

 9
4
−8



⇐⇒


2α + 3β − 2γ = 9

α + β = 4

−2α − 2β + γ = −8

⇐⇒


2α + 3β − 2γ = 9

− β + 2γ = −1 L2 ←− 2L2 − L1

β − γ = 1 L3 ←− L3 + L1

⇐⇒


2α + 3β − 2γ = 9

− β + 2γ = −1

γ = 0 L3 ←− L3 + L2

⇐⇒


2α + 3β = 9

− β = −1

γ = 0

⇐⇒


α = 3

β = 1

γ = 0

par remontées successives

Ainsi, l’unique solution X1 du problème de Cauchy (P1) est donné par :

∀t ∈ R, X1(t) = 3e−tU−1 + U0 =

 6e−t + 3
3e−t + 1
−6e−t − 2



ii) Montrer que la trajectoire associée à la solution X1 est convergente. Expliciter le point
limite (`1, `2, `3). Quelle propriété possède ce point limite vis-à-vis du système différentiel
linéaire (S) ?

Démonstration. D’après la question précédente, pour tout t ∈ R,

X1(t) =

x1(t)y1(t)
z1(t)

 =

 6e−t + 3
3e−t + 1
−6e−t − 2


donc x1(t) −→

t→+∞
3, y1(t) −→

t→+∞
1 et z1(t) −→

t→+∞
−2. Ainsi la trajectoire associée à la solution

X1 est convergente, de point limite (`1, `2, `3) = (3, 1,−2). D’après la question 9 , ce point
limite est un état d’équilibre du système différentiel (S).
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b) i) Déterminer l’unique solution du problème de Cauchy (P2), que l’on notera X2.

Démonstration. On considère une solution X quelconque de (S) :

X(t) = αe−tU−1 + βU0 + γetU1

X est solution de (P2) ⇐⇒ X(0) =

 3
2
−3


⇐⇒ αU−1 + βU0 + γU1 =

 3
2
−3



⇐⇒


2α + 3β − 2γ = 3

α + β = 2

−2α − 2β + γ = −3

⇐⇒


2α + 3β − 2γ = 3

− β + 2γ = 1 L2 ←− 2L2 − L1

β − γ = 0 L3 ←− L3 + L1

⇐⇒


2α + 3β − 2γ = 3

− β + 2γ = 1

γ = 1 L3 ←− L3 + L2

⇐⇒


α = 1

β = 1

γ = 1

par remontées successives

Ainsi, l’unique solution X2 du problème de Cauchy (P2) est donné par :

∀t ∈ R, X2(t) = e−tU−1 + U0 + etU1 =

2e−t + 3− 2et

e−t + 1
−2e−t − 2 + et



ii) Montrer que la trajectoire associée à la solution X2 est divergente.

Démonstration. D’après la question précédente, pour tout t ∈ R,

X2(t) =

x2(t)y2(t)
z2(t)

 =

2e−t + 3− 2et

e−t + 1
−2e−t − 2 + et


On remarque alors que z2(t) −→

t→+∞
+∞. Ainsi la trajectoire associée à la solution X2 est

divergente.

c) On a représenté page suivante les tracés de 4 solutions du système différentiel linéaire (S). Dire
quels sont les tracés associés aux solutions X1 et X2 étudiées ci-dessus. On justifiera les réponses.

Démonstration. • La figure 4 est la seule où l’on a z(t) −→
t→+∞

+∞. Ainsi, cette figure correspond
nécessairement à la solution X2.
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• Dans la figure 3, on a z(t) −→
t→+∞

−∞. Donc cette figure correspond à une trajectoire divergente.
Ainsi, cette figure ne correspond pas à la solution X1.

• Dans la figure 1, on a lim
t→+∞

x(t) = lim
t→+∞

y(t) = lim
t→+∞

z(t) = 0. Cette propriété n’est pas
vérifiée par la solution X1 donc cette figure ne correspond pas à X1.

• Par élimination, la figure 2 correspond à la solution X1. De plus, en lisant approximativement
les valeurs limites sur le graphe, le tracé est cohérent avec le fait que x1(t) −→

t→+∞
3, y1(t) −→

t→+∞
1

et z1(t) −→
t→+∞

−2.

Fig. 1 Tracé 1 Fig. 2 Tracé 2

Fig. 3 Tracé 3 Fig. 4 Tracé 4

12. Dans cette question, on souhaite faire le lien entre la résolution d’un système différentiel linéaire
(homogène) et l’exponentielle de matrice introduite à la partie II.

a) On fixe (α, β, γ) ∈ R3 et on considère la solution de (S) :

X : t 7→ αe−tU−1 + βU0 + γetU1

On pose C = P

 α
β
γ

 ∈M3,1(R) (où P est définie à la question 2.b)).

Montrer que, pour tout t ∈ R, X(t) = etAC.
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Démonstration. Soit t ∈ R.

etAC = P etDP−1P

 α
β
γ

 cf question 7.b)

= P etD
 α
β
γ


= P

e−t 0 0
0 1 0
0 0 et

αβ
γ


= P

αe−tβ
γet


= P

αe−t1
0
0

+ β

0
1
0

+ γet
0

0
1




= αe−tP

1
0
0

+ βP

0
1
0

+ γetP

0
0
1


= αe−tU−1 + βU0 + γetU1

= X(t)

où l’on a utilisé le fait que P est précisément la matrice obtenue en concaténant les vecteurs
colonnes U−1, U0 et U1.

b) Commenter le résultat obtenu à la question précédente, au regard des résultats du cours sur les
équations différentielles linéaires du premier ordre à coefficient constant.

Démonstration. Considérons une équation différentielle linéaire homogène à coefficients constants
d’ordre 1 :

y′ = ay

où a ∈ R∗ est un paramètre.
D’après le cours, les solutions de cette équation sont de la forme :

y(t) = ceat, c ∈ R

Ainsi, on a montré à la question précédente que les solutions de X ′ = AX admettaient une
« formule exponentielle » analogue : c ∈ R est analogue à C ∈M3,1(R) (paramètre(s) à choisir)
et eat est analogue à etA.
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Problème 2 - Une propriété limite des lois de Pareto (ESSEC I 2011)

Question préliminaire

Soit g une fonction continue sur un intervalle I, à valeurs réelles.

1. a) Montrer que pour tout α et β dans I tels que α < β :

1

β − α

∫ β

α
g(t) dt =

∫ 1

0
g
(
α+ (β − α)x

)
dx

Démonstration.

• La fonction g est continue sur l’intervalle I. Comme α et β sont deux éléments de I, on en
déduit que g est continue sur le segment [α, β].

Ainsi, l’intégrale
∫ β

α
g(t) dt est bien définie.

• On effectue le changement de variable x =
1

β − α
t− α

β − α
.∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x =
t− α
β − α

(et donc t = (β − α)x+ α)

↪→ dx =
1

β − α
dt et dt = (β − α) dx

• t = α ⇒ x = 1

• t = β ⇒ x = 0

Ce changement de variable est valide car ψ : x 7→ (β − α)x+ α est de classe C1 sur [0, 1].
On obtient : ∫ β

α
g(t) dt =

∫ 1

0
g(α+ (β − α)x) (β − α) dx

On a bien :
1

β − α

∫ β

α
g(t) dt =

∫ 1

0
g
(
α+ (β − α)x

)
dx.

• Il est aussi possible de partir de l’intégrale
∫ 1

0
g(α + (β − α)x) dx et obtenir, à l’aide du

changement de variable t = α+ (β − α)x , l’intégrale
∫ β

α
g(t) dt (à une constante près).

• Dans cette question, on passe d’une intégrale sur le segment [α, β] à une intégrale sur le
segment [0, 1] (ou l’inverse). L’idée derrière le changement de variable opéré est assez simple.
Il s’agit de paramétrer le segment [α, β] à l’aide des réels α et β. Plus précisément, on a :

{α+ (β − α)x | x ∈ [0, 1]} = [α, β]

Autrement dit, lorsque x parcourt le segment [0, 1] dans son entier, α+ (β − α)x parcourt
le segment [α, β] dans son entier. Généralement, cette égalité s’écrit plutôt sous la forme :

{xβ + (1− x)α | x ∈ [0, 1]} = [α, β]

On comprend cette paramétrisation sur quelques exemples : si x = 0, on récupère α ; si
x = 1, on récupère β ; si x = 1

2 , on récupère α+β
2 , le point milieu du segment [α, β]. Ce

dernier point correspond à l’isobarycentre du couple (α, β). Le point xβ+(1−x)α apparaît
lui comme le barycentre du couple (α, β) affecté des coefficients de pondération 1− x et x.
Finalement, [α, β] s’écrit comme l’ensemble des barycentres de ce type.

Commentaire
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b) Soit a, b, c, d dans I tels que a < c < d < b.
On suppose g décroissante sur I, établir l’encadrement :

1

b− c

∫ b

c
g(t) dt 6

1

d− c

∫ d

c
g(t) dt 6

1

d− a

∫ d

a
g(t) dt

Démonstration.
• Remarquons tout d’abord, à l’aide de la question précédente :

1

b− c

∫ b

c
g(t) dt =

∫ 1

0
g
(
c+ (b− c)x

)
dx

(car c et b sont des éléments
de I tels que c < b)

1

d− c

∫ d

c
g(t) dt =

∫ 1

0
g
(
c+ (d− c)x

)
dx

(car c et d sont des éléments
de I tels que c < d)

1

d− a

∫ d

a
g(t) dt =

∫ 1

0
g
(
a+ (d− a)x

)
dx

(car a et d sont des éléments
de I tels que a < d)

• Cherchons tout d’abord à obtenir la première inégalité.
Soit x ∈ [0, 1].

Tout d’abord d < b (d’après l’énoncé)

donc d− c < b− c

ainsi (d− c) x 6 (b− c) x (car x > 0)

d’où c+ (d− c) x 6 c+ (b− c) x

enfin g
(
c+ (d− c) x

)
> g

(
c+ (b− c) x

)
(car g est décroissante sur I)

∀x ∈ [0, 1], g
(
c+ (d− c) x

)
> g

(
c+ (b− c) x

)
• D’après ce qui précède, par croissance de l’intégrale, les bornes étant dans l’ordre croissant
(0 6 1) : ∫ 1

0
g
(
c+ (d− c) x

)
dx >

∫ 1

0
g
(
c+ (b− c) x

)
dx

q q

1

d− c

∫ d

c
g(t) dt

1

b− c

∫ b

c
g(t) dt

(d’après la question 1.a)
avec c < b et c < d)

On a bien :
1

b− c

∫ b

c
g(t) dt 6

1

d− c

∫ d

c
g(t) dt.

Dans la question précédente, on a détaillé un processus qui peut être vu comme une mise
sous forme normale : toute intégrale entre α et β d’une fonction continue sur le segment
[α, β] peut s’écrire comme une intégrale entre 0 et 1. L’intérêt d’une telle normalisation se
perçoit très bien dans cette question. Au lieu d’étudier trois intégrales sur des domaines
différents, l’étape de normalisation permet de ne considérer que des intégrales entre 0 et
1. On obtient trois objets sous la même forme, ce qui rend plus simple les comparaisons.

Commentaire
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• Cherchons maintenant à obtenir la deuxième inégalité.
Soit x ∈ [0, 1]. Remarquons :

a+ (d− a)x 6 c+ (d− c)x

⇔ (d − a)x− (d − c)x 6 c− a

⇔ (c− a)x 6 c− a

⇔ x 6 1 (car c− a > 0)

La dernière inégalité étant vérifiée, il en est de même de la première.

Ainsi a+ (d− a) x 6 c+ (d− c) x

donc g
(
a+ (d− a) x

)
> g

(
c+ (b− c) x

)
(car g est décroissante sur I)

∀x ∈ [0, 1], g
(
a+ (d− a) x

)
> g

(
c+ (d− c) x

)
• Puis, par croissance de l’intégrale, les bornes étant dans l’ordre croissant (0 6 1) :∫ 1

0
g
(
a+ (d− a) x

)
dx >

∫ 1

0
g
(
c+ (d− c) x

)
dx

q q

1

d− a

∫ d

a
g(t) dt

1

d− c

∫ d

c
g(t) dt

(d’après la question 1.a)
avec a < d et c < d)

On a bien :
1

d− c

∫ d

c
g(t) dt 6

1

d− a

∫ d

a
g(t) dt.

Partie I - Partie fractionnaire d’une variable à densité

• Pour tout réel x positif ou nul :
− on note [x] la partie entière de x. On rappelle qu’il s’agit de l’unique entier naturel n qui vérifie

l’encadrement : n 6 x < n+ 1.
− on note

{
x
}

= x− [x], que l’on appelle la partie fractionnaire de x.
Par exemple, si x = 12, 34, alors [x] = 12 et {x} = 0, 34.

• Dans cette partie, X désigne une variable aléatoire à valeurs réelles admettant une densité f qui
vérifie les propriétés :
− f est nulle sur ]−∞, 0[ ;
− la restriction de f à [0,+∞[ est continue et décroissante.
On pose M = f(0), c’est le maximum de f sur R.

Soit Y =
{
X
}

= X −
[
X
]
, la variable aléatoire égale à la partie fractionnaire de X.

On note FY la fonction de répartition de Y .

Généralement, on distingue les fonctions :
× partie entière par défaut, notée b.c. On rappelle que pour tout x ∈ R, bxc désigne l’entier

directement inférieur à x (c’est-à-dire le plus grand entier n ∈ Z tel que n 6 x).
(c’est la notation du programme utilisée pour définir la fonction partie entière)

× partie entière par excès, notée d.e. On rappelle que pour tout x ∈ R, dxe désigne l’entier direc-
tement supérieur à x (c’est-à-dire le plus petit entier n ∈ Z tel que n > x).

Il ne faut pas se laisser déstabiliser par la nouvelle notation de l’énoncé ([x] en lieu et place de bxc)
et accepter de l’utiliser par la suite.

Commentaire
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• Comme le stipule le programme officiel, « la fonction partie entière permet de discrétiser des phé-
nomènes continus ». En particulier, si X est une v.a.r. à densité, la v.a.r. T = [X] est, quant à elle,
une v.a.r. discrète. L’étude de la v.a.r. T est relativement fréquente dans les sujets car cela permet
de proposer un énoncé qui mêle v.a.r. à densité et v.a.r. discrètes.

• De manière assez malhabile, le sujet définit la fonction partie fractionnaire seulement sur l’intervalle
[0,+∞[. La définition de l’énoncé est en fait valable sur R tout entier. La conséquence de cette
restriction de l’énoncé est que la v.a.r. [X] n’est bien définie que si X est à valeurs positives. Or
l’énoncé ne donne aucune information sur X(Ω). Par contre, on sait que X est une v.a.r. qui admet
une densité nulle sur ]−∞, 0[. On peut donc démontrer :

P
(

[X > 0]
)

= 1

Ainsi, la v.a.r. [X] est presque sûrement bien définie.
C’est ce point de vue probabiliste qui est ici adopté par le concepteur.

• Profitons-en pour faire un point sur la notation X(Ω).
Rappelons qu’une v.a.r. X est une application X : Ω→ R.
Comme la notation le suggère, X(Ω) est l’image de Ω par l’application X.
Ainsi, X(Ω) n’est rien d’autre que l’ensemble des valeurs prises par la v.a.r. X :

X(Ω) = {X(ω) | ω ∈ Ω}

= {x ∈ R | ∃ω ∈ Ω, X(ω) = x}

Il faut bien noter que dans cette définition aucune application probabilité P n’apparaît.

• Il est toujours correct d’écrire : X(Ω) ⊆ ]−∞,+∞[.
En effet, cette propriété signifie que toute v.a.r. X est à valeurs dans R, ce qui est toujours le cas
par définition de la notion de variable aléatoire réelle.

• Dans le cas des v.a.r. discrètes, il est d’usage relativement courant de confondre :

× l’ensemble des valeurs possibles de la v.a.r. X (i.e. l’ensemble X(Ω)),

× l’ensemble {x ∈ R | P
(

[X = x]
)
6= 0}, ensemble des valeurs que X prend avec probabilité non

nulle. Dans le cas qui nous intéresse ici, à savoir X est une v.a.r. discrète, cet ensemble est appelé
support de X et est noté Supp(X).

• Dans le cas des v.a.r. à densité, la détermination de l’ensemble image est plus technique. Dans
certains sujets, l’ensemble image des v.a.r. étudiées sera précisé (« On considère une v.a.r. à valeurs
strictement positives »). Si ce n’est pas le cas :

× si X suit une loi usuelle, on peut se référer à l’ensemble image donné en cours. Par exemple, si
X ↪→ U([0, 1]), on se permet d’écrire :

« Comme X ↪→ U([0, 1]), on considère : X(Ω) = [0, 1]. »

× si X ne suit pas une loi usuelle, on étudie l’ensemble : I = {x ∈ R | fX(x) > 0}.
On se permet alors d’écrire :

« Dans la suite, on considère : X(Ω) = I. »

En décrétant la valeur de X(Ω), on ne commet pas une erreur mais on décide d’ajouter une
hypothèse qui ne fait pas partie de l’énoncé. Cette audace permet de travailler avec un ensemble
image connu, ce qui permet de structurer certaines démonstrations (l’ensemble image étant connu,
on se rappelle que la fonction de répartition, par exemple, s’obtient par une disjonction de cas).

Commentaire
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2. Que vaut FY (y) lorsque y < 0 ? Que vaut FY (y) lorsque y > 1 ?
On justifiera les réponses.

Démonstration.
• On note h : x 7→ x− [x] de telle sorte que Z = h(X).
Comme : X(Ω) ⊆ ]−∞,+∞[, on obtient alors :

Y (Ω) =
(
h(X)

)
(Ω) = h

(
X(Ω)

)
⊆ h

(
]−∞,+∞[

)
⊆ [0, 1[

La dernière inclusion est obtenue de la manière suivante.
Soit x ∈ [0,+∞[. Par définition de la partie entière : [x] 6 x < [x] + 1. Or :

[x] 6 x < [x] + 1 ⇔ 0 6 x− [x] < 1 ⇔ 0 6 h(x) < 1

Ainsi : Y (Ω) ⊂ [0, 1[.

• Soit y ∈ R. Deux cas simples se présentent :
× si y ∈ ]−∞, 0[, alors : [Y 6 y] = ∅, car Y (Ω) ⊂ [0, 1[. Donc :

FY (y) = P([Y 6 y]) = P(∅) = 0

× si y ∈ [1,+∞[, alors : [Y 6 y] = Ω, car Y (Ω) ⊂ [0, 1[. Donc :

FY (y) = P([Y 6 y]) = P(Ω) = 1

Pour tout y < 0, FY (y) = 0 et pour tout y > 1, FY (y) = 1.

• Profitons de cette question pour faire un point sur la fonction partie fractionnaire x 7→ x− [x].
Sa représentation graphique est la suivante :

x

y

y = 1

y = 0

Fonction x 7→ x− [x]

• La fonction partie fractionnaire est un cas particulier de fonctions dites périodiques.

× Soit T ∈ [0,+∞[. Une fonction est dite T -périodique si :

∀x ∈ R, f(x+ T ) = f(x)

Le réel T est appelé période de la fonction f .

× La représentation graphique sur R d’une fonction f T -périodique s’obtient par translation de
sa représentation graphique sur un intervalle de longueur T (par exemple l’intervalle [0, T [).

La fonction partie fractionnaire est une fonction 1-périodique. Sa représentation graphique sur
R s’obtient bien par translation de sa représentation graphique sur un intervalle de longueur 1
(par exemple par translation de sa représentation graphique sur l’intervalle [0, 1[).

Commentaire
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3. Justifier l’égalité entre évènements : [Y = 0] =
⋃
n∈N

[X = n].

En déduire : FY (0) = 0.

Démonstration.

• Soit ω ∈ Ω. On a :

ω ∈ [Y = 0] ⇔ Y (ω) = 0

⇔ X(ω)− [X](ω) = 0

⇔ X(ω) = [X](ω)

⇔ X(ω) est un entier positif

⇔ Il existe n ∈ N tel que X(ω) = n

⇔ Il existe n ∈ N tel que ω ∈ [X = n]

⇔ ω ∈
⋃
i∈N

[X = n]

On en déduit : [Y = 0] =
⋃
i∈N

[X = n].

• Par définition, un événement est un ensemble. Démontrer l’égalité de deux ensembles c’est
démontrer que tout élément du premier ensemble est dans le second et inversement. Ou
encore qu’un élément est dans le premier ensemble si et seulement si il est aussi dans le
second (c’est la manière de procéder choisie ici).

• En terme d’événement, cela signifie que le premier événement est réalisé si et seulement si
le second événement est réalisé. Plus précisément, il existe ω réalisant le premier événement
si et seulement si ce même ω réalise le second événement.

Commentaire

• Par ailleurs :

[Y 6 0] = [Y < 0] ∪ [Y = 0]

= ∅ ∪ [Y = 0] (car Y (Ω) = [0, 1[)

= [Y = 0]

On en déduit :

FY (0) = P
(

[Y = 0]
)

= P
( ⋃
n∈N

[X = n]

)
(d’après le début de question)

=
+∞∑
n=0

P
(

[X = n]
) (par σ-additivité et car les événements de la famille(

[X = n]
)
n∈N sont deux à deux incompatibles)

=
+∞∑
n=0

0 = 0 (car X est une v.a.r. à densité)

On en conclut : FY (0) = 0.
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4. Soit y un réel de l’intervalle ]0, 1[.

a) Montrer l’égalité : FY (y) =
+∞∑
n=0

∫ n+y

n
f(t) dt.

Démonstration.

• On note T = [X]. Dans la suite, on considère X(Ω) = [0,+∞[.

On a alors : T (Ω) = N.

• La famille
(

[T = n]
)
n∈N forme un système complet d’événements.

Ainsi, par la formule des probabilités totales :

FY (y) = P
(

[Y 6 y]
)

= P
(

[X − T 6 y]
)

(par définition de Y )

=
+∞∑
n=0

P
(

[T = n] ∩ [X − T 6 y]
)

=
+∞∑
n=0

P
(

[T = n] ∩ [X − n 6 y]
)

=
+∞∑
n=0

P
(

[[X] = n] ∩ [X 6 n+ y]
)

=
+∞∑
n=0

P
(

[n 6 X < n+ 1] ∩ [X 6 n+ y]
) (par définition de

la partie entière)

=
+∞∑
n=0

P
(

[n 6 X 6 n+ y]
)

(car y ∈ ]0, 1[)

=
+∞∑
n=0

∫ n+y

n
f(t) dt

(car X admet f
pour densité)

Ainsi, pour tout y ∈ ]0, 1[ : FY (y) =
+∞∑
n=0

∫ n+y

n
f(t) dt.

On a utilisé dans cette question l’égalité : [n 6 X < n+ 1]∩[X 6 n+ y] = [n 6 X 6 n+ y].
Pour l’obtenir, il suffit de démontrer :

[X < n+ 1] ∩ [X 6 n+ y] = [X 6 n+ y]

Comme signalé dans la remarque précédente, ce résultat se démontre par double inclusion.
(⊆) Soit ω ∈ [X < n+ 1] ∩ [X 6 n+ y]. Alors, en particulier, ω ∈ [X 6 n+ y].

(⊇) Soit ω ∈ [X 6 n+ y]. Alors X(ω) 6 n+ y. Ainsi :

X(ω) 6 n+ y < n+ 1 (car y < 1)

On en conclut : ω ∈ [X 6 n+ 1].
On obtient ainsi, à l’aide de l’hypothèse initiale : ω ∈ [X 6 n+ y] ∩ [X 6 n+ 1].

Commentaire
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b) Montrer, en utilisant la question préliminaire, les inégalités :

− Pour tout n entier naturel :
∫ n+y

n
f(t) dt > y

∫ n+1

n
f(t) dt.

− Pour tout n entier naturel non nul :
∫ n+y

n
f(t) dt 6 y

∫ n+y

n−1+y
f(t) dt.

Démonstration.
• Soit n ∈ N. On applique la question 1.b) avec :

× I = [0,+∞[.
× g = f [0,+∞[ (restriction de f à [0,+∞[).

La fonction g est continue et décroissante sur [0,+∞[.
× c = n ∈ I, d = n+ y ∈ I et b = n+ 1 ∈ I (on a bien c < d < b).

1

b− c

∫ b

c
g(t) dt 6

1

d− c

∫ d

c
g(t) dt

q q

1

1

∫ n+1

n
f(t) dt

1

y

∫ n+y

n
f(t) dt

(car [n, n+ y[ ⊆ [0,+∞[

et [n, n+ 1[ ⊆ [0,+∞)

On a bien :
∫ n+y

n
f(t) dt > y

∫ n+1

n
f(t) dt.

• Sous les mêmes hypothèses, avec a = n − 1 + y et c = n et d = n + y comme précédemment
(on a bien a < c < d), on a, d’après la question 1.b) :

1

d− c

∫ d

c
g(t) dt 6

1

d− a

∫ d

a
g(t) dt

q q

1

y

∫ n+y

n
f(t) dt

1

1

∫ n+y

n−1+y
f(t) dt

On a bien : y
∫ n+y

n−1+y
f(t) dt >

∫ n+y

n
f(t) dt.

À première vue, il est difficile de faire le lien entre le résultat exposé dans cette question et
celui de la question 1.b). Il peut d’ailleurs sembler ardu de trouver les valeurs de a, b, c et d
pour lesquelles on doit appliquer le résultat. En réalité, on n’a guère le choix :
× dans la première inégalité à démontrer ici, les bornes basses des intégrales ont la même

valeur n. Cela correspond à la première inégalité de 1.b) où l’on retrouve la même borne
basse c des deux côtés de l’inégalité. Une fois c = n posé, les valeurs b = n+ 1 et d = n+ y
suivent logiquement.

× dans la deuxième inégalité à démontrer, les bornes hautes des intégrales ont même valeur
n + y. Cela correspond à la deuxième inégalité de 1.b) où l’on retrouve la même borne
haute d des deux côtés.

Finalement, cette question ne présente pas de difficulté majeure. D’ailleurs, l’énoncé fournit la
manière de procéder en précisant qu’il s’agit d’utiliser la question préliminaire.

Commentaire
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c) En déduire : y
∫ +∞

0
f(t) dt 6 FY (y) 6

∫ y

0
f(t) dt+ y

∫ +∞

y
f(t) dt, puis l’encadrement :

y 6 FY (y) 6 y +M

Démonstration.

• D’après la question précédente, on a :

∀n ∈ N,
∫ n+y

n
f(t) dt > y

∫ n+1

n
f(t) dt

Soit m ∈ N. En sommant ces inégalités, on obtient :

m∑
n=0

∫ n+y

n
f(t) dt >

m∑
n=0

(
y

∫ n+1

n
f(t) dt

)
q

y
m∑
n=0

∫ n+1

n
f(t) dt = y

∫ m+1

0
f(t) dt

(par relation
de Chasles)

Or :

× d’après la question 4.a), la quantité
m∑
n=0

∫ n+y

n
f(t) dt admet une limite finie lorsque m

tend vers +∞.

× l’intégrale
∫ +∞

0
f(t) dt est convergente car f est une densité de probabilité. On en déduit

que la quantité de droite admet elle aussi une limite finie lorsque m tend vers +∞.

Finalement, par passage à la limite dans l’inégalité, on obtient :

+∞∑
n=0

∫ n+y

n
f(t) dt > y

∫ +∞

0
f(t) dt

q

FY (y)

Ainsi : y
∫ +∞

0
f(t) dt 6 FY (y).

• D’après la question précédente, on a :

∀n ∈ N∗,
∫ n+y

n
f(t) dt 6 y

∫ n+y

n−1+y
f(t) dt

Soit m ∈ N∗. En sommant ces inégalités, on obtient :

m∑
n=1

∫ n+y

n
f(t) dt 6

m∑
n=1

(
y

∫ n+y

n−1+y
f(t) dt

)
q q

m∑
n=0

∫ n+y

n
f(t) dt−

∫ y

0
f(t) dt y

m∑
n=1

∫ n+y

n−1+y
f(t) dt = y

∫ m+y

y
f(t) dt
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Finalement, par passage à la limite dans l’inégalité (autorisé pour les raisons précédentes), on
obtient :

+∞∑
n=0

∫ n+y

n
f(t) dt−

∫ y

0
f(t) dt 6 y

∫ +∞

y
f(t) dt

Ainsi : FY (y) 6
∫ y

0
f(t) dt+ y

∫ +∞

y
f(t) dt.

• Par ailleurs :

×

∫ +∞

−∞
f(t) dt = 1 car f est une densité de probabilité.

×

∫ +∞

−∞
f(t) dt =

∫ +∞

0
f(t) dt car f est nulle en dehors de [0,+∞[.

∫ +∞

0
f(t) dt = 1

On a de plus, comme y > 0 alors [X > y] ⊆ [X > 0] et :∫ +∞

y
f(t) dt = P

(
[X > y]

)
6 P

(
[X > 0]

)
=

∫ +∞

0
f(t) dt = 1

Par multiplication par y > 0, on obtient : y
∫ +∞

y
f(t) dt 6 y.

Enfin, comme f est décroissante :

∀t ∈ [0, y], f(t) 6 f(0) = M

Par croissance de l’intégrale, les bornes étant dans l’ordre croissant (0 6 y), on a :∫ y

0
f(t) dt 6

∫ y

0
M dt = M y

Comme y < 1 et M = f(0) > 0,
∫ y

0
f(t) dt 6 M y 6 M .

En combinant tous ces résultats, on obtient bien : y 6 FY (y) 6 y +M .
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Partie II - Premier chiffre significatif d’une variable de Pareto

Pour tout réel λ strictement positif, on définit la fonction gλ sur R par gλ : x 7→


λ

xλ+1
si x > 1

0 sinon
.

5. Montrer que pour tout réel λ strictement positif, gλ est une densité de probabilité sur R (loi dite
de Pareto).

Démonstration.
Soit λ > 0.

• Tout d’abord, la fonction gλ est :

× continue sur ]−∞, 1[ car constante sur cet intervalle.

× continue sur ]1,+∞[ comme inverse de la fonction x 7→ xλ+1 :

− continue sur ]1,+∞[,

− et qui ne s’annule pas sur ]1,+∞[.

La fonction f est donc continue sur R sauf éventuellement en un nombre fini de points.

• Soit x ∈ R. Deux cas se présentent :

× si x ∈ ]−∞, 1[, alors : gλ(x) = 0 > 0.

× si x ∈ [1,+∞[, alors comme λ > 0 et x > 0, on a : gλ(x) =
λ

xλ+1
> 0.

Finalement : ∀x ∈ R, gλ(x) > 0.

• Il reste à démontrer que l’intégrale
∫ +∞

−∞
gλ(x) dx converge et vaut 1.

Tout d’abord : ∫ +∞

−∞
gλ(x) dx =

∫ +∞

1
gλ(x) dx

car gλ est nulle en dehors de [1,+∞[.

La fonction gλ est continue par morceaux sur [1,+∞[.

Ainsi, l’intégrale
∫ +∞

1
gλ(x) dx est impropre seulement en +∞.

Soit B ∈ [1,+∞[.∫ B

1
gλ(t) dt =

∫ B

1
λ

1

tλ+1
dt = λ

∫ B

1
t−λ−1 dt

= λ

[
x−λ

−λ

]B
1

= −1

[
1

xλ

]B
1

(car λ 6= 0)

= −
(

1

Bλ
− 1

1

)
= 1− 1

Bλ
−→

B→+∞
1 (car λ > 0)

Ainsi, l’intégrale impropre
∫ +∞

−∞
gλ(t) dt est convergente et vaut 1.

27



E2A 24 janvier 2026
Mathématiques

On en conclut que gλ est bien une densité de probabilité.

• De manière générale, on dit d’une v.a.r. suit la loi de Pareto de paramètres a > 0 et
b > 0 si elle admet pour densité la fonction f définie par :

f : t 7→


0 si t < b

a
ba

ta+1
si t > b

Dans cet énoncé, on étudie donc le cas particulier où b = 1.

• Pour démontrer qu’une fonciton est une densité de probabilité, il est nécessaire de dé-
montrer qu’une intégrale impropre est convergente et de valeur 1. Ce type de question
exige donc un calcul et non un résultat de convergence comme le théorème de compa-
raison des intégrales généralisées de fonctions continues positives.

• On peut toutefois noter que démontrer la convergence de
∫ +∞

1

1

tλ+1
dt est simple. On

reconnaît en effet une intégrale de Riemann, impropre en +∞ et d’exposant λ+1 > 1.

Commentaire

Dans toute la suite, on note Zλ une variable aléatoire admettant gλ pour densité.

6. Déterminer la fonction de répartition Gλ de Zλ.

Démonstration.
Soit x ∈ R. Deux cas se présentent :

× si x ∈ ]−∞, 1[. Comme f est nulle en dehors de [1,+∞[ :

Gλ(x) = P
(

[Yλ 6 x]
)

=

∫ x

−∞
gλ(t) dt = 0

× si x ∈ [1,+∞[ :

Gλ(x) =

∫ x

−∞
gλ(t) dt

=

∫ 1

−∞
gλ(t) dt +

∫ x

1
gλ(t) dt

(par relation de Chasles et car
f est nulle en dehors de [1,+∞[)

= 1− 1

xλ

(en reprenant le calcul de la
question précédente pour
B = x ∈ [1,+∞[)

Finalement : Gλ : x 7→


0 si x < 1

1−
(

1

x

)λ
si x > 1
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7. On note ln la fonction logarithme népérien, et log la fonction logarithme décimal.

Cette fonction est définie sur ]0,+∞[ par : log(x) =
ln(x)

ln(10)
pour tout réel x strictement positif.

On pose Xλ = log(Zλ), et on note Fλ la fonction de répartition de Xλ.

a) Établir, pour tout réel x, l’égalité : Fλ(x) = Gλ
(
10x
)
.

Démonstration.
• Commençons par déterminer Xλ(Ω).
Notons h : x 7→ log(x), de sorte que Xλ = h(Zλ).
On considère Zλ(Ω) = [1,+∞[. On en déduit :

Xλ(Ω) =
(
h(Zλ)

)
(Ω) = h

(
Zλ(Ω)

)
= h

(
[1,+∞[

)
= [h(1), lim

x→+∞
h(x)[

(car la fonction h est continue et
strictement croissante sur [1,+∞[)

= [0,+∞[

Et ainsi : Xλ(Ω) = [0,+∞[.

• Soit x ∈ R. Deux cas se présentent :
× si x < 0, alors [Xλ 6 x] = ∅ car Xλ(Ω) = [0,+∞[. Donc :

Fλ(x) = P
(

[Xλ 6 x]
)

= P(∅) = 0

En particulier, comme x < 0 alors 10x < 1 et Gλ(10x) = 0.

On a bien : ∀x < 0, Fλ(x) = 0 = Gλ(10x).

× si x > 0 alors :

Fλ(x) = P
(

[Zλ 6 x]
)

= P
(

[log(Zλ) 6 x]
)

= P
([

ln(Zλ)

ln(10)
6 x

])
(par définition de log)

= P
(

[ln(Zλ) 6 x ln(10)]
)

(car ln(10) > 0)

= P
( [
Zλ 6 exp

(
x ln(10)

)] )
(par stricte croissance de exp sur R)

= Gλ(10x) (car ex ln(10) = eln(10x) = 10x)

On obtient finalement : Fλ : x 7→
{

0 si x < 0
Gλ(10x) si x > 0

.

• On s’est permis de considérer : Zλ(Ω) = [1,+∞[ conformément à la remarque faite en début
de Partie I. Une telle hypothèse assure la bonne définition de la v.a.r. Xλ = log(Zλ) (sans
précision sur Zλ(Ω), la v.a.r. Zλ est seulement presque sûrement bien définie).

• Lors de l’étude du 2ème cas, l’argument x > 0 n’est pas utile. L’esprit du sujet était
d’ailleurs plutôt de démontrer, dans cette question : ∀x ∈ R, Fλ(x) = Gλ(10x) et de
reporter la disjonction de cas dans la question suivante. Dans cette correction, on a opté
pour la présentation habituelle qui permet de mettre en avant le fait que la fonction Fλ est
définie par cas.

Commentaire
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b) En déduire que Xλ suit une loi exponentielle dont on précisera le paramètre en fonction de λ.

Démonstration.
Soit x ∈ [0,+∞[.

• On a :

Fλ(x) = Gλ(10x)
(d’après la
question précédente)

= 1− 1

(10x)λ
(d’après la question 6.)

= 1− 1

10λx

= 1− 1

exp
(
λx ln(10)

)
= 1− 1

eln(10)λx
= 1− e− ln(10)λx

• Ainsi :

Fλ : x 7→

{
0 si x < 0

1− e− ln(10)λx si x > 0

On reconnaît la fonction de répartition associée à la loi E (ln(10)λ).

On en conclut : Xλ ↪→ E (ln(10)λ).

• Généralement, lorsque l’on considère une v.a.r. Z qui suit une loi de Pareto de paramètre
a > 0 et b > 0 (la définition est donnée dans la remarque de la quesiton 5.), on introduit

la v.a.r. X = ln

(
Z

b

)
. On démontre alors que X suit une loi exponentielle.

Plus précisément, on a : X ↪→ E (a).

• Dans ce sujet, on étudie la loi de Pareto avec paramètre b = 1. En lieu et place de Zλ,

on aurait pu introduire Tλ = ln

(
Zλ
1

)
= ln(Zλ). D’après ce qui précède : Tλ ↪→ E (λ). Le

choix de l’énoncé de travailler avec le logarithme en base 10 au lieu du logarithme népérien
peut donc paraître surprenant. Il introduit une difficulté qui ne paraît pas nécessaire (avec
la présence artificielle de ln(10)). Ce choix est en réalité expliqué par la question 9. : le
travail à l’aide du logarithme décimal est classique lors de l’étude de la loi de Benford.

Commentaire
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8. On pose Yλ =
{
Xλ

}
, la partie fractionnaire de Xλ.

Montrer, en utilisant les résultats de la partie I, que pour tout réel y de l’intervalle ]0, 1[ :

lim
λ→0+

P
(

[Yλ 6 y]
)

= y

En déduire que, lorsque λ tend vers 0, Yλ converge en loi vers une variable aléatoire suivant la loi
uniforme sur l’intervalle [0, 1].

Démonstration.

• D’après la question précédente : Xλ ↪→ E (ln(10)λ).
On en déduit que la fonction fλ ci-dessous est une densité de la v.a.r. Xλ.

fλ : x 7→

{
0 si x < 0

ln(10)λ e− ln(10)λx si x > 0

• La fonction fλ vérifie les propriétés :

− f est nulle sur ]−∞, 0[ ;

− la restriction de f à [0,+∞[ est continue et décroissante.

On pose alors M = fλ(0) = ln(10)λ, le maximum de fλ sur R.

La v.a.r. Xλ vérifie donc les propriétés permettant d’appliquer les résultats de la Partie I.

• D’après la Partie I, la v.a.r. Yλ admet pour fonction de répartition la fonction FYλ suivante :

FYλ : y 7→


0 si y < 0

FYλ(y) si y ∈ [0, 1[

1 si y > 1

Enfin, d’après la question 4.c) : ∀y ∈ ]0, 1[, y 6 FYλ(y) 6 y + ln(10)λ.

• Soit y ∈ ]0, 1[ et soit λ > 0. On a :

× lim
λ→0+

y = y,

× lim
λ→0+

y + ln(10)λ = y,

Par théorème d’encadrement, on a : lim
λ→0+

FYλ(y) = y.

• Soit y ∈ R. Quatre cas se présentent :

× si y < 0 alors FYλ(y) = 0 −→
λ→0+

0.

× si y = 0 alors FYλ(0) = 0.
En effet, comme FYλ est la fonction de répartition d’une v.a.r. à densité, alors FYλ est continue
sur R. Par continuité en 0, on obtient :

FYλ(0) = lim
y→0−

FYλ(y) = lim
y→0−

0 = 0

FYλ(0) = 0

On en déduit alors : FYλ(0) = 0 −→
λ→0+

0.
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× si y ∈ ]0, 1[ alors FYλ(y) −→
λ→0+

y d’après ce qui précède.

× si y > 1 alors FYλ(y) = 1 −→
λ→0+

1.

Finalement : ∀y ∈ R, FYλ(y) −→
λ→0+

F (y) où F est la fonction :

F : y 7→


0 si y < 0

y si y ∈ [0, 1[

1 si y > 1

On reconnaît la fonction de répartition associé à la loi uniforme sur [0, 1].

On a donc bien démontré que lorsque λ tend vers 0, Yλ converge en loi vers Y
avec Y ↪→ U([0, 1]).

• On demande dans cette question de démontrer que « lorsque λ tend vers 0, Yλ converge en
loi vers un v.a.r. suivant la loi uniforme sur [0, 1] ». Or, conformément au programme officiel,
on définit la convergence en loi d’une suite de v.a.r. (Yn)n∈N∗ vers une v.a.r. Y .
La question, telle que posée ici, n’entre donc pas dans le cadre du programme.

• Il est cependant assez simple d’adapter cette question au programme. Pour ce faire, il suffit
de considérer la suite de v.a.r. (Vn)n∈N∗ où pour tout n ∈ N∗ : Vn = Y 1

n
(on « pose » λ = 1

n).

On obtient ainsi : Vn
L−→

n→+∞
V où V ↪→ U([0, 1]).

Commentaire

9. Pour tout réel x supérieur ou égal à 1, on note α(x) le premier chiffre dans l’écriture décimale de x.
C’est un entier de l’intervalle J1, 9K.
Par exemple, α(50) = 5 et α(213, 43) = 2.
a) Pour tout k ∈ J1, 9K, montrer l’équivalence :

α(x) = k ⇔
{

log(x)
}
∈
[

log(k), log(k + 1)
[

Démonstration.
Soit x > 1 et soit k ∈ J1, 9K.
• On procède tout d’abord par équivalence.{

log(x)
}
∈
[

log(k), log(k + 1)
[

⇔ log(k) 6
{

log(x)
}
< log(k + 1)

⇔ ln(k)

ln(10)
6
{

log(x)
}
<

ln(k + 1)

ln(10)

⇔ ln(k) 6
{

log(x)
}
× ln(10) < ln(k + 1) (car ln(10) > 0)

⇔ k 6 exp
({

log(x)
}
× ln(10)

)
< k + 1

(car la fonction exp est
strictement croissante sur R)

⇔ k 6 exp
(
ln
(
10{log(x)}

))
< k + 1

⇔ k 6 10{log(x)} < k + 1

⇔
[
10{log(x)}

]
= k (par définition de la partie entière)

∀x > 1, ∀k ∈ J1, 9K,
{

log(x)
}
∈
[

log(k), log(k + 1)
[
⇔

[
10{log(x)}

]
= k
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• Il est à noter que l’on part de la propriété de l’équivalence qui a la formulation la plus
complexe. C’est une manière classique de procéder : on part du plus complexe pour aller
vers le plus simple. En partant dans ce sens, cette première partie de la démonstration ne
présente pas de difficulté majeure. Il s’agit simplement de remplacer la fonction log par
sa définition et de faire en sorte de simplifier les inégalités.

• L’énoncé ne détaille par les propriétés de la fonction log, qui n’est autre que la fonction
logarithme en base 10. Cette fonction vérifie des propriétés similaires à la fonction loga-
rithme népérien (qui n’est autre que le logarithme en base e). On a notamment :

× la fonction log (logarithme en base 10) est strictement croissante et continue sur
]0,+∞[. Elle réalise une bijection de ]0,+∞[ sur ]−∞,+∞[.
Sa bijection réciproque est la fonction x 7→ 10x. En particulier :

y = 10x ⇔ x = log(y)

∀y ∈ ]0,+∞[, 10log(x) = x et ∀y ∈ ]−∞,+∞[, log(10y) = y

× pour tout (x, y) ∈ ]0,+∞[ × ]0,+∞[, on a :

log
(
x× y

)
= log(x) + log(y) et log

(
x

y

)
= log(x)− log(y)

Commentaire

• Il reste alors à démontrer :
[
10{log(x)}

]
= α(x).

× Tout d’abord, par définition : ∀y ∈ R, {y} = y − [y].

Pour y = log(x), on obtient :
{

log(x)
}

= log(x)−
[

log(x)
]
. Ainsi :

10{log(x)} = 10log(x)−
[
log(x)

]
=

10log(x)

10[log(x)]

=
x

10[log(x)]

10{log(x)} =
x

10[log(x)]

× Comme x > 1, il existe un unique entier r ∈ N tel que :

10r 6 x < 10r+1

(r renseigne sur l’ordre de grandeur de x : si r = 0, x est de l’ordre des unités ; si r = 1, x
est de l’ordre des dizaines ; si r = 2, x est de l’ordre des centaines . . . )
Cet entier r s’exprime aisément en fonction de x. En effet :

10r 6 x < 10r+1

⇔ r 6 log(x) < r + 1
(par stricte croissance de la
fonction log sur ]0,+∞[)

⇔ [log(x)] = r
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× Notons alors : β(x) = x− α(x)× 10r.
(α(x) est le premier chiffre significatif ; α(x) × 10r est l’ordre de grandeur ; β(x) est le
nombre qui commence à partir du deuxième chiffre significatif de x)
On a :

x = α(x)× 10r + β(x)

donc
x

10r
= α(x) +

β(x)

10r

Par définition : β(x) ∈ [0, 10r[ donc :
β(x)

10r
∈ [0, 1[. On en déduit :

α(x) 6 α(x) +
β(x)

10r
6 α(x) + 1

q
x

10r

On en conclut : α(x) =
[ x

10r

]
=
[ x

10[log(x)]

]
.

En combinant tous les résultats précédents, on obtient, pour tout x > 1 et tout k ∈ J1, 9K :{
log(x)

}
∈
[

log(k), log(k + 1)
[
⇔

[
10{log(x)}

]
= k

⇔
[ x

10[log(x)]

]
= k

⇔ α(x) = k

La démonstration α(x) =
[
10{log(x)}

]
est délicate. Il est vivement conseillé de laisser de

côté cette partie de la question. C’est l’une des dernières questions du sujet. On peut donc
penser que le concepteur a pour but ici d’offrir un challenge aux meilleurs candidats. Il est
fort probable que le barème d’une telle question soit peu précis et qu’on laisse le correcteur
féliciter toute tentative raisonnable de démonstration.

Commentaire

b) On note Cλ = α
(
Zλ
)
la variable aléatoire prenant comme valeur le premier chiffre de Zλ.

Montrer, pour tout k ∈ J1, 9K : lim
λ→0+

P
(

[Cλ = k]
)

= log

(
1 +

1

k

)
.

Cette loi limite obtenue pour le premier chiffre de Zλ est appelée loi de Benford.

Démonstration.
Soit λ > 0.

• On rappelle : Zλ(Ω) = [1,+∞[. On en déduit :

Cλ(Ω) =
(
α(Zλ)

)
(Ω) = α

(
Zλ(Ω)

)
= α

(
[1,+∞[

)
= J1, 9K

Et ainsi : Cλ(Ω) = J1, 9K.
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• Soit k ∈ J1, 9K.

P
(

[Cλ = k]
)

= P
(

[ α(Zλ) = k ]
)

= P
( [

log(k) 6
{

log(Zλ)} < log(k + 1)
] ) (d’après la question

précédente)

= P
( [

log(k) 6
{
Xλ} < log(k + 1)

] )
= P

(
[ log(k) 6 Yλ < log(k + 1) ]

)
−→
λ→0+

P
(

[ log(k) 6 Y < log(k + 1) ]
) (d’après la question 8.b)

avec Y ↪→ U([0, 1]))

Enfin :

P
(

[ log(k) 6 Y < log(k + 1) ]
)

= FY
(

log(k + 1)
)
− FY

(
log(k)

) (car Y est une
v.a.r. à densité)

= log(k + 1)− log(k)
(car log(k + 1) ∈ [0, 1]
et log(k) ∈ [0, 1])

= log

(
k + 1

k

)
= log

(
1 +

1

k

)

Finalement, on a bien : ∀k ∈ J1, 9K : lim
λ→0+

P
(

[Cλ = k]
)

= log

(
1 +

1

k

)
.
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