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Mathématiques

DS5 correction (version B)

Probléme 1 (sujet maison)

Partie I : Etude d’une matrice A

2 =2 2
On considére la matrice carrée A = ( 1 1 2 ) .

1. a)

b)

-2 0 =3

On exécute le code Python suivant :

import numpy as np

import numpy.linalg as al

A = np.array([[2,-2,2],[1,1,2],[-2,0,-3]1)
print(al.matrix_power(A,3))

[ " I S

et on obtient l'affichage :

1 [[ 2 -2 2]
2 [ 1 1 2]
3 [-2 0 -3]]

Traduire ce résultat par une égalité entre deux matrices.

Démonstration. D’aprés I'affichage Python : . O

En déduire les valeurs propres possibles de A.

Démonstration. D’aprés la question précédente, le polynéme P(X) = X3 — X est un polynéme
annulateur de A. Or,
PX)=X(X*-1)=X(X-1)(X+1)

On en déduit que
Sp(A) C {racines de P(X)} ={-1,0,1}

Ainsi, |les valeurs propres possibles de A sont —1, 0 et 1 ‘ O
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2. a) Déterminer Sp(A) et une base de chacun des sous-espaces propres de A.

T
Démonstration. Soit U = (y) € M31(R).

z

3 —2y+22=0
r+2y+22=0

—2x —2z=0

3x —2y+22=0

T+2y+22=0

z + 2=0 L3+ —1Ls

3z —2y+2z=0

<:>{ 8y+42=0 L3 +— 3Ly — 1,4
2y+ z2=0 Ly <+—3Ls— 1

3x —2y+22=0

{ 2+ z=0

3x — 2y = 22

{ 20 = —z

3z = -3z L1 +— L1+ Lo

{ 20 = —z

{ﬂc =—z

On en déduit que

2
E_1(A) # {04, )} donc —1 est valeur propre de A. De plus, la famille 71 = ( ( 1 ) > :

— engendre E_;(A)

— est libre car constituée d’un unique vecteur non nul
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donc | F_; est une base de E_;(A) ‘

U € Ey(A) <= AU =04, ,(»)

2 -2 2 z 0
<~ 1 1 2 ¥yl = (0)
-2 0 -3 z 0
20 =2y +22=0
= T+ y+22=0
—2x —32=0
r—y+ z2=0
= z+y+22=0
—2z —32=0
r— y+z=0
g 2y+z:0 Lo+—Ly— 14
—2y—2=0 L3y <+— L3+ 21,
T— Yy+z=
<~
24z =
T— Yy=—z
<~
2y = —z
2z = -3z L1%2L1+L2
<~
2 = —z
x ——%z
<~ 1
Y= —3%

On en déduit que

3
Eo(A) # {04, ,(r)} donc 0 est valeur propre de A. De plus, la famille 7y = ( ( 1 ) ) :

— engendre Ey(A)
— est libre car constituée d’un unique vecteur non nul

donc ‘.7-"0 est une base de Ey(A) ‘
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UEEl(A) s (A—I)UZOJ//:SJ(R

)
1 -2 2\ [z 0
<:>102 yl=1{0o0
Z 0

r—2y+22=0
= +22=0
—42z=0
r—2y+22=0
<~
+22=0
x—2y+22—0
<~
=0 L3<—L3—L1
<~

On en déduit que

El(A):{(;) € M1(R)|x=—-22z et yzO}
:{ ((?z) e//g,l(R)\zeR}
< -2
= Vect (0))
1

-2
E1(A) # {04, ,(r)} donc 1 est valeur propre de A. De plus, la famille 7 = ( ( 0 ) ) :
1

— engendre E;(A)
— est libre car constituée d’un unique vecteur non nul

donc ‘]-"1 est une base de F1(A) ‘

Les valeurs propres possibles de A sont —1,0,1 et on a vérifié que chacune d’elles est une valeur
propre de A. Donc

Sp(4) = {-1,0,1}

O

b) Démontrer qu'il existe une matrice P € .#3(R) inversible, dont la premiére ligne est (2 3 —2),
et une matrice D € .#5(R) diagonale, dont les coefficients diagonaux sont dans 1’ordre croissant,
qui vérifient A = PDP~!. On explicitera les matrices P et D.

Démonstration. La matrice A est carrée d’ordre 3 et admet trois valeurs propres distinctes donc
A est diagonalisable. Ainsi, il existe

« une matrice P € .#5(R) inversible, obtenue en concaténant les bases des sous-espaces propres
de A
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« une matrice D € .#3(R) diagonale, dont les coefficients diagonaux sont les valeurs propres de

A
telles que A = PDP~!.
2 3 =2 -1 0 0
On pose alors P = | 1 1 0 |JetD=10 0 0].Parlaformule de changement de
-2 =2 1 0 0 1
base, on a bien A = PDP~L. O

Partie II : Exponentielle d’une matrice carrée

Si (an), (bn), (cn), (dn), (€n), (fn),(gn), (hn), (in) désignent neuf suites convergentes, de limites res-
pectives a,b,c,d, e, f,g,h,i, et si (My,)nen est une suite de matrices de .#3(R) définie par

an bp ¢y
Vn € N, Mn — dn €n fn )

on dit que la suite de matrices (M, )nen admet une limite coefficient par coefficient, et on le note

a b c a b c

lm M,=1[|d e f ou M, — |d e f
n—+o0 . n—+00 .
g h i g h 1

Si M € .#5(R), on pose, pour tout entier naturel n,

n
Lok
Su(M)=>" G M* € M3(R).
k=0
Lorsque (S, (M))pen admet une limite coefficient par coefficient, on note e cette limite.

3. Deux résultats théoriques. On utilisera les notations du préambule de la partie II pour les preuves.

a) Soit M € #5(R) et soit (ay,) une suite réelle convergente, de limite £. Montrer que la suite de
matrices (ay, M) admet une limite coefficient par coefficient et que

lim a,M ={M

n—-4o00

a b c
Démonstration. Soit M = [d e f| € .#5(R). Soit n € N.
g h 1
a b c
apnM =a, |d e f
g h i
ana  apb  opc fa 0¢b fLc a b c
=|apd ane anf| — |4d fle Lf)| = d e f|=IM
ang aph Qg e bg th Vi g h i
O
b) Soient (M,) et (M]) deux suites de matrices de .#5(R) qui admettent chacune une limite
coefficient par coefficient. On note lim M, = M et lim M) = M’. Montrer que les suites
n—-400 n—-+o0o
de matrices (M, + M]) et (M, M],) admettent chacune une limite coefficient par coefficient et
que
lim (M, +M.)=M+M et lim (M,M) = MM
n—-+00 n—-+00
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Démonstration. Soit n € N.

an b, cn a
M, + M, = (dn en fu |l +1|d, e
gn hn i 9n h‘;l, ip

an+a, by+b, cptc,

(dn +d, en+el, fot+ [l

gn+ 9, hn+h, in,+i],

at+d b+bd c+/c
— |d+d e+e fH+f|=M+M

e \g+ g hth itd

gn hn in gn hl i,
ana,, + bpd), + cngl,  anbl, + bnel, + cuhl,  ancl, + bufl + cpil,
dnal, + end), + fngl, dnbl, + enel, + fuhl,  dncl, +enfl + fnil,
Iny, + hnd;, + ingy,  Gnbl, + hney, +inhy,  gncl, + hnfy, + inidy,
ad' +bd +cqg  ab +be +ch'  ad +bf + i’
— | dd +ed + fg db +ee + fH dd +ef' + fi' | = MM’
n—r+o0 ’ A, / N / Y
ga' + hd +1ig" gt + he' +ih" g +hf + it

an bp cn\ [a, b,
MnM;z =|dn en fn dy e fn
-/

Les candidat-es devront référer précisément a ces questions lorsque ces résultats seront utilisés.

a 0 0 e 0 0
4. Montrer que,si D= |0 b 0], alors e? existe et vaut e? = [ 0 e® 0
0 0 ¢ 0 0 e

Ainsi, on a montré que l’exponentielle d’une matrice diagonale est une matrice diagonale.
Démonstration. Soit k € N. La matrice D étant diagonale, on a

0

0

k

@)
@)
o)
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Soit n € N.

en reconnaissant des sommes partielles de séries exponentielles. Ainsi,

Su(D) = 3 D
k=0 R-
01 ak 0
=0\ 0 cF
n %ak 0 0
=> |0 g 0
k=0 0 O HC
> %ak 0
k=0 "
= 0 > bt
k=0
0 0
e 0 0
0 ¢ 0
n—-+oo 0 0 ec

el

existe et el =

ea

0

eb

0

0
0
eC

5. Dans cette question uniquement, la matrice M est donnée par M =

a) Calculer M? et M3. En déduire la matrice M* pour tout entier naturel k.

Démonstration. On a

et

Pour tout k > 3, M* = M3MF+F—3 =

M? =

011 0

0 0 1 0

0 00 0

0 0 1 0

0 00 0

0 00 0
Ou///S(R)Mk_?)

@)

—_

o O

S = =

1
1
0
0

o O O
o O O

S O =

o O O

5(R)- Finalement,
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100
01 0 sik=0
0 0 1
01 1
Pour tout k € N, M* = 001 sih=1
0 00
0 0 1
0 0O sik=2
0 0O
\04//[3@@) sik >3

O

b) Donner, pour tout entier n supérieur ou égal a 2, 'expression de S, (M ). En déduire 'existence

et Pexpression de la matrice eM.

Démonstration. Soit n € N tel que n > 2.

no1
Su(M) = 3 Lt
k=0
2 1 i n 1 i
=> =M"+> —M par Chasles, car n > 2
k=0 k! j=3 k!
2 1 k k .
:kZ:oHM car M* =0 z,m®) si k >3
1 00 01 1 1 0 01
=0 1 0J+]0 0 1 +§ 0 00
0 01 0 00 0 00
3
11 3
=10 1 1
0 0 1

Ainsi, la suite (S, (M)) est constante a partir du rang 2. On en déduit que
113
Sp(M) — [0 1 1
n—+o00 00 1

donc

1 1
eM existeet eM = [0 1
0 0

= =W

6. Dans cette question uniquement, la matrice M est donnée par M =

[ T —Y
—_ = =
—_ = =

a) Calculer M? et M3 en fonction de M.
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Démonstration. On a

11 1 1 11 3 3 3
M*=(1 1 1)(1 1 1|=|3 3 3|=3M
11 1 1 11 3 3 3
et
M3 = M*M = (3M)M = 3M?* = 3(3M) = 3°M
O
b) Soit k € N*. Conjecturer une formule simple pour I’expression de M* puis la démontrer par
récurrence.
Démonstration. D’aprés la question précédente, on conjecture que M* = 3510 pour tout
k € N*.

Montrons par récurrence : Vk € N*, P(k)

ott P(k) : « MF =310 ».

Initialisation :

D’une part, M! = M. D’autre part, 3'"*M = 3°M = M. D’ou P(1).
Heérédité :

Soit k € N*. On suppose P(k). Montrons P(k + 1).

M = MMF
=M (3k_1M ) par hypothése de récurrence
— gk=1ps2
= 3*1(3M) cf la question 6.a)
=3"M
D’ou P(k +1).
Par principe de récurrence, on a montré que | pour tout k € N*, M* = 35=1pf |, O

¢) Soit n € N. Montrer que :
n k
Sp(M) =1+ = <Z 3—1>M
Démonstration. Soit n € N*.
Sn(M) = Z Fr

=M%+ Z par Chasles, car n > 1

k;l

—I+Z 3’“ v

Vérifions que cette égalité est valable pour n = 0.
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0
o D’une part, So(M) = > HFMF =M =1
k=0
0
. D?autrepart,l+% (Z 3’:—1>M:I—|—§(1—1)M:I
k=0

D’ou I’égalité pour tout entier n € N. O

d) En déduire que eM existe et que :

Démonstration. On reconnait une somme partielle de série exponentielle, d’ol

1/ 3k 1,
(501 g @D

D’apres la question 3.a),

puis, d’aprés la question 8.b),

e? — 1

M

n—-+00

n k
Se)=T+2(s 2 1\ — 1+
s\ & w

Donc

‘ eM existe et eM :I+63T71M.

O

7. Dans cette question, on considére la matrice A de la Partie I et on réutilise les notations de la
question 2.b). On fixe un réel ¢.

a) Montrer que, pour tout n € N :
S, (tA) = PS,(tD)P~!

Démonstration. D’aprés la question 2.b), A = PDP~!. On en déduit par récurrence immédiate
que, pour tout k € N, A¥ = PD*P~1. Soit n € N,

| —

(tA)*

|
M=

e
Il

o
x

Sn(tA)

I
Eod
107
=[5
h
o

I
It
o IS

o

)

E

3

I
|
M=
| — =%
o)
=
~
T

/\p
<”3

B
Il
o

M=
=

(tD)k> pt

!

I
T

@
=~
S
3

10
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A

b) Conclure que et existe et en donner une expression sous la forme et4 = PA(t)P~'.

On explicitera la matrice A(t) sous forme de tableau matriciel en fonction de ¢.

Démonstration. On remarque que la matrice tD est diagonale et, plus précisément,

-t 0 0
tD=10 0 0
0 0 ¢t
D’aprés la question 4, la matrice e!? existe et vaut
et 0 0 et 0 0
eP=[0 & 0ol=10 10
0 0 ¢ 0 0 ¢
Ceci veut exactement dire que
et 0 0
Sp(tD) — 0 1 0 (1)
n—+00 0 0 et

D’aprés la question 38.b) et la question précédente, on a alors

S, (tA) = PS,(tD)P™! — PpPetPp~!

n—-+o0o

On en déduit que ' existe et et4 = PA(t)P~! avec

O

En généralisant ce résultat, on montre alors que l’exponentielle d’une matrice diagonalisable est une
matrice diagonalisable (on ne demande pas de le faire).

Partie III : Etude d’un systéme différentiel linéaire

On considére le systéme différentiel linéaire suivant :

2 = 2z@) — 2y() + 2z2(¢)
(S):q (@) = =) + y@) + 22()
Z(t) = —2x(t) — 3z(¢)

(t)

(t)
ot les inconnues x, , z sont des fonctions de classe C! sur R. Pour tout ¢ € R, on pose X (t) = (y(t)) :
z

On a alors :
(9) & X'=AX
ou A est la matrice étudiée dans la partie I.

8. Déterminer 'ensemble des états d’équilibre du systéme différentiel linéaire (.5).

11
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Démonstration. Soit (u,v,w) € R3.

u
(u,v,w) est un état d’équilibre de (S) <= A (v) =051 (R)
w
2
1

u 3
= v) € Vect ( ( 1 ) ) cf question 2.a)
w -2

On en déduit que 'ensemble des états d’équilibre de (S) est
Vect ((3,1,-2)) = {A(3,1,-2) | A € R}
Ul

9. Soit ty € R et soient X et Y deux solutions de (.5). On suppose que X (¢9) = Y (to). Que peut-on
en déduire sur X et Y 7

Démonstration. Notons W = X (to) = Y (o). Sous ces hypothéses, X et Y sont deux solutions du
méme probléme de Cauchy :

-y {Z’(t) = AZ(t)

d’inconnue Z
Z(tg) =W

Or, tout probléme de Cauchy admet une unique solution. On en déduit que X =Y, i.e. pour tout

teR, X(t) =Y(t). O
10. Justifier que l’ensemble des solutions de (.5) est :

{t — ae”'U_1 + BUy + ve'Uy | (a, B,7) € R3}

2 3 -2
ounlU_q = 1],Uy= 1 et U = 0 |.
-2 -2 1

Démonstration. La matrice A est diagonalisable (cf question 2.b)) et on a montré a la question
2.a) que (U_1,Up, Uy) est une base de .#51(R) formée de vecteurs propres de A. D’apreés le cours,
les solutions de (S) sont toutes de la forme

X(t)=aeU_| + B Uy + ve'Uy
= ae_th + BUy + vetUl

ot (a, B,7) € R3. O

11. On considére dans cette question deux problémes de Cauchy :

X' = AX X' = AX
9
(P1) : x(0) = | 4 et (P2): X(0) = | 2
—8 -3

12
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a) i) Déterminer I'unique solution du probléme de Cauchy (P1), que l'on notera X;.

Démonstration. On considére une solution X quelconque de (5) :

X(t) = aetU_1 + BUy + ety

9
X est solution de (P1) < X(0) = ( 4 )
-8

9
< aU_1+ pUy +~U; = (4)

-8
20 +38 —2v=9
= a + p =4

20 =28 + y=-8
20 +38 —2y=9

= - B +2y=-1 Lo +— 2Ly — L,
B — =1 L3+ L3+ 1Ly
20 +38 —2y=9
— - B +2y=-1
L v=0 L3 <+— L3+ Lo
20 + 38 =9
= - p =-1
v=0
[a =3
— 154 =1 par remontées successives
v=0

Ainsi, 'unique solution X; du probléme de Cauchy (P;) est donné par :

6e i +3
Vit € R, Xl(t) = 3e_tU71 +Upg=| 3et+1
—6et—2

O

#) Montrer que la trajectoire associée & la solution X; est convergente. Expliciter le point
limite (¢1, 42, ¢3). Quelle propriété posséde ce point limite vis-a-vis du systéme différentiel
linéaire (5) 7

Démonstration. D’aprés la question précédente, pour tout ¢ € R,

x1(t) 6e=t +3
Xa(t) = (yl(t)) = ( 3el +1 )
z1(t) —6e~t —2

donc z1(t) — 3,y1(t) — letz1(t) — —2. Ainsi la trajectoire associée a la solution
t—+o00 t——+o0 t—+o00

X1 est convergente, de point limite (¢1,¢2,¢3) = (3,1, —2). D’aprés la question 9, ce point
limite est un état d’équilibre du systéme différentiel (.5). O

13
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b) i) Déterminer I'unique solution du probléme de Cauchy (P2), que 'on notera Xos.

Démonstration. On considére une solution X quelconque de (5) :

X(t) = OzeftU_l + BUy + 'yetUl

3
X est solution de (P2) <= X(0) = ( 2 )
-3

3
— aU_1+ BUg+~U; = (2)

-3
20 +38 —2y=3
= a + p =2

—2a =28 + y=-3
20 +38 —2y=3

— - B +2v=1 Lo +— 2Ly — Ly
8 — =0 Ls<+— Ls+ 14
20 +38 —2y=3
— - B +2v=1
vy=1 Ly +— L3+ Lo
« =1
= 15} =1 par remontées successives
vy=1

Ainsi, 'unique solution Xo du probléme de Cauchy (P3) est donné par :

2¢7! + 3 — 2¢
Vit € R, Xo(t) = e_tU_1 + Uy + etUl = et 41
—2et -2+t

#) Montrer que la trajectoire associée a la solution X5 est divergente.

Démonstration. D’apreés la question précédente, pour tout ¢ € R,

xo(t) 2e7t 43 — 2¢t
o= (i) = ()
29(t) —2e7t —24¢!

On remarque alors que za(t) t—+> +o00. Ainsi la trajectoire associée & la solution X est
— 00

divergente. O

c¢) On a représenté page suivante les tracés de 4 solutions du systéme différentiel linéaire (). Dire
quels sont les tracés associés aux solutions X et Xo étudiées ci-dessus. On justifiera les réponses.

Démonstration. « La figure 4 est la seule ou l'on a z(t) . T +00. Ainsi, cette figure correspond
—+00

nécessairement & la solution Xs.

14
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« Dans la figure 3, on a z(t) t—+> —o0. Donc cette figure correspond a une trajectoire divergente.
—+00

Ainsi, cette figure ne correspond pas a la solution Xj.

« Dans la fi 1 li t) = i t) = i t) = 0. Cett iété n’est pas
ans la figure 1, on & lim x(t) m y(t) m z(t) = 0. Cette propriété n’est pas

vérifiée par la solution X7 donc cette figure ne correspond pas & Xj.
« Par élimination, la figure 2 correspond a la solution X;. De plus, en lisant approximativement
les valeurs limites sur le graphe, le tracé est cohérent avec le fait que z1(t) — 3,y1(t) — 1
t——+o0 t——+o0

et z1(t) o —2.

—+00

O

— it} — it}

----- yit) 75 e yith

--- ay -
50

25

0.0

-25 ==

50 ~

-15 T

t t

Fic. 1 Tracé 1 Fic. 2 Tracé 2

— xit) 20000 1 — Xt} 7

40000

30000 1 A 10000 === zit) o

20000

10000 =10000

—20000

10000 ™ ~30000

0000 Ay —40000

Fic. 3 Tracé 3 Fi1G. 4 Tracé 4

12. Dans cette question, on souhaite faire le lien entre la résolution d’un systéme différentiel linéaire
(homogene) et ’exponentielle de matrice introduite a la partie II.

a) On fixe (o, 8,7) € R? et on considére la solution de (5) :
X it ae”tU_1 4 pUy + 7€'y

«

On pose C' = P (,8) € M31(R) (ou P est définie & la question 2.b)).
Y

Montrer que, pour tout t € R, X (t) = *AC.

15
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b)

Démonstration. Soit t € R.

«
A0 = petPplp (B) cf question 7.b)

1 0
=Plac[0]| +5 1 + e' )
0

ol o))

= oze_tU,1 + BUy + e U1
— X(#)

ou l'on a utilisé le fait que P est précisément la matrice obtenue en concaténant les vecteurs
colonnes U_q, Uy et Uj. O

Commenter le résultat obtenu a la question précédente, au regard des résultats du cours sur les
équations différentielles linéaires du premier ordre a coefficient constant.

Démonstration. Considérons une équation différentielle linéaire homogéne a coefficients constants
d’ordre 1 :

y =ay
ol a € R* est un paramétre.

D’aprés le cours, les solutions de cette équation sont de la forme :
y(t) = ce™, ceR

Ainsi, on a montré a la question précédente que les solutions de X’ = AX admettaient une
« formule exponentielle » analogue : ¢ € R est analogue & C' € .5 1(R) (paramétre(s) a choisir)
et e est analogue & et4. O

16
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Probléme 2 - Une propriété limite des lois de Pareto (ESSEC I 2011)

Question préliminaire

Soit g une fonction continue sur un intervalle I, & valeurs réelles.

1. a) Montrer que pour tout « et 5 dans I tels que ao < 3 :

1
58—«

/j g(t) dt:/o1 g(a+ (B —a)z) dx

Démonstration.

Commentaire

1
o Il est aussi possible de partir de 'intégrale / g(a+ (8 — a)x) dx et obtenir, a 'aide du
0

La fonction g est continue sur Uintervalle 1. Comme « et 8 sont deux éléments de I, on en
déduit que g est continue sur le segment [«, 3].

B
Ainsi, l'intégrale / g(t) dt est bien définie.
. 1 Q
On effectue le changement de variable | =z = t—
f-—a  P-a
x—t_a (et donct = (8 — )z + «a)
=5 =
— dx = dt et dt=(f—a)dx

—«
el=a = x=1
ot:ﬁ = J/’:O

Ce changement de variable est valide car 1 : x + (8 — a) x + « est de classe C! sur [0, 1].
On obtient :

8 1
/ g(t)dtzf gatB-a)z) (6—a)de
« 0

B8 1
On a bien : Bia/a g(t) dt—/o g(a+ (8- a)z) dz.

B
changement de variable| ¢t =a+ (8 —a)z |, intégrale / g(t) dt (& une constante prés).
«

Dans cette question, on passe d’une intégrale sur le segment [«, 5] & une intégrale sur le
segment [0, 1] (ou 'inverse). L’idée derriére le changement de variable opéré est assez simple.
Il s’agit de paramétrer le segment [o, 3] & 'aide des réels « et 3. Plus précisément, on a :

{a+B-a)z|zel01]} = [af]

Autrement dit, lorsque x parcourt le segment [0, 1] dans son entier, o + (5 — ) x parcourt
le segment [«, 5] dans son entier. Généralement, cette égalité s’écrit plutdt sous la forme :

{zf+(1-2)alzel0,1]} = [ /]

On comprend cette paramétrisation sur quelques exemples : si x = 0, on récupére «; si

x = 1, on récupére 5; si x = %, on récupére O‘—J“B, le point milieu du segment [«, 5]. Ce

2
dernier point correspond a l'isobarycentre du couple («, ). Le point x 5+ (1 —x) a apparait
lui comme le barycentre du couple (v, 3) affecté des coefficients de pondération 1 — = et x.

Finalement, [« 8] s’écrit comme ’ensemble des barycentres de ce type. O
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b) Soit a, b, ¢, d dans I tels que a < ¢ < d < b.
On suppose g décroissante sur I, établir 'encadrement :

1 b 1 d 1 d
b_c/ g(t) dt < d_c/ g(t) dt < d_a/ g(t) dt

Démonstration.
o Remarquons tout d’abord, a I’aide de la question précédente :

1 b ! (car c et b sont des éléments
b—c/c g(t) dt = /0 g(c—i—(b—c)x) dx de I tels que ¢ < b)

1 d ! (car c et d sont des éléments
d—c/c g(t) dt = /0 g(c—l—(d—c)x) dr de I tels que ¢ < d)

(car a et d sont des éléments

1 d 1
d—a/a glt) dt = /0 g(a+(d—a)r) dv de I tels que a < d)

o Cherchons tout d’abord & obtenir la premiére inégalité.

Soit x € [0, 1].
Tout d’abord d < b (d’apres 1’énoncé)
donc d—c < b—-c
ainsi (d—c)zx < (b—c)x (car x> 0)
d’on c+(d—c)z < c+(b—c)x
enfin glc+(d—c)z) = glc+(b—c) ) (car g est décroissante sur I)

vz €[0,1], g(c+(d—c)z) = g(c+(b—c) z)

o D’aprés ce qui précéde, par croissance de l'intégrale, les bornes étant dans l’ordre croissant
(0<1):

1 d 1 b (d’apres la question 1.a)
/C g(t) dt b—C/c g(t) dt avec ¢ < b etc<d)

1 b 1 d
o [ awa < o [

Commentaire \

Dans la question précédente, on a détaillé un processus qui peut étre vu comme une mise
sous forme normale : toute intégrale entre o et 8 d’une fonction continue sur le segment
[, B] peut s’écrire comme une intégrale entre 0 et 1. L’intérét d’une telle normalisation se
percoit trés bien dans cette question. Au lieu d’étudier trois intégrales sur des domaines
différents, 1’étape de normalisation permet de ne considérer que des intégrales entre 0 et
1. On obtient trois objets sous la méme forme, ce qui rend plus simple les comparaisons.
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o Cherchons maintenant & obtenir la deuxiéme inégalité.
Soit = € [0, 1]. Remarquons :

a+(d—a)x < c+(d—c)x
& @d—a)z—(d—c)x < c—a

& (c—a)z < c—a

& <1 (car ¢ —a >0)
La derniére inégalité étant vérifiée, il en est de méme de la premieére.
Ainsi a+(d—a)z < c+(d—c)x
donc gla+(d—a)z) > glc+(—c) ) (car g est décroissante sur I)

vz €[0,1], gla+(d—a) z) > g(c+ (d—c) z)

« Puis, par croissance de 'intégrale, les bornes étant dans l’ordre croissant (0 < 1) :

1 1
/ gla+(d—a)z)de > / g(c+(d—c) z) dx
0 0

1 d 1 d (d’apres la question 1.a)
d—a/a 9(t) dt d—c/C g(t) dt avec a < d et c < d)
1 d 1 d
On a bien : T / g(t) dt < T g / g(t) dt. [

Partie I - Partie fractionnaire d’une variable a densité

o Pour tout réel z positif ou nul :
— on note [z]| la partie entiére de z. On rappelle qu'il s’agit de I'unique entier naturel n qui vérifie
lencadrement : n <z <n+ 1.
— on note {:L‘} =z — [z], que l'on appelle la partie fractionnaire de x.
Par exemple, si = 12,34, alors [x] = 12 et {z} = 0, 34.
« Dans cette partie, X désigne une variable aléatoire & valeurs réelles admettant une densité f qui
vérifie les propriétés :
— f est nulle sur | — 0o, 0[;
— la restriction de f a [0, 4+o00] est continue et décroissante.
On pose M = f(0), c’est le maximum de f sur R.

Soit Y = {X } =X — [X ], la variable aléatoire égale a la partie fractionnaire de X.

On note Fy la fonction de répartition de Y.

Commentaire \

Généralement, on distingue les fonctions :

x partie entiére par défaut, notée |.]. On rappelle que pour tout = € R, |x| désigne l'entier
directement inférieur a x (c’est-a-dire le plus grand entier n € Z tel que n < x).
(c’est la notation du programme utilisée pour définir la fonction partie entiére)

x partie entiére par excés, notée [.]. On rappelle que pour tout x € R, [z]| désigne I'entier direc-
tement supérieur & = (c’est-a-dire le plus petit entier n € Z tel que n > x).

Il ne faut pas se laisser déstabiliser par la nouvelle notation de I’énoncé ([z] en lieu et place de |z])

et accepter de 'utiliser par la suite.

\. J
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Commentaire

o Comme le stipule le programme officiel, « la fonction partie entiére permet de discrétiser des phé-
nomeénes continus ». En particulier, si X est une v.a.r.  densité, la v.a.r. T' = [X] est, quant a elle,
une v.a.r. discréte. L’étude de la v.a.r. T est relativement fréquente dans les sujets car cela permet
de proposer un énoncé qui méle v.a.r. & densité et v.a.r. discrétes.

« De maniére assez malhabile, le sujet définit la fonction partie fractionnaire seulement sur l'intervalle
[0, +00]. La définition de 'énoncé est en fait valable sur R tout entier. La conséquence de cette
restriction de 1’énoncé est que la v.a.r. [X] n’est bien définie que si X est a valeurs positives. Or
I’énoncé ne donne aucune information sur X (£2). Par contre, on sait que X est une v.a.r. qui admet
une densité nulle sur | — 0o, 0[. On peut donc démontrer :

P([X>0]) =1

Ainsi, la v.a.r. [X] est presque stirement bien définie.
C’est ce point de vue probabiliste qui est ici adopté par le concepteur.

« Profitons-en pour faire un point sur la notation X (2).
Rappelons qu’une v.a.r. X est une application X :  — R.
Comme la notation le suggére, X (Q2) est I'image de 2 par 'application X.
Ainsi, X () n’est rien d’autre que ’ensemble des valeurs prises par la v.a.r. X :

X(Q) = {X(w)|weQ}
= {zreR|weQ, X(w)=uz}

Il faut bien noter que dans cette définition aucune application probabilité P n’apparait.

o Il est toujours correct d’écrire : X(Q) C | — oo, +00l.
En effet, cette propriété signifie que toute v.a.r. X est a valeurs dans R, ce qui est toujours le cas
par définition de la notion de variable aléatoire réelle.

o Dans le cas des v.a.r. discrétes, il est d’usage relativement courant de confondre :

x l'ensemble des valeurs possibles de la v.a.r. X (i.e. 'ensemble X (Q2)),

x Densemble {z € R | P([X = x]) # 0}, ensemble des valeurs que X prend avec probabilité non
nulle. Dans le cas qui nous intéresse ici, & savoir X est une v.a.r. discréte, cet ensemble est appelé
support de X et est noté Supp(X).

o Dans le cas des v.a.r. a densité, la détermination de ’ensemble image est plus technique. Dans
certains sujets, 'ensemble image des v.a.r. étudiées sera précisé (« On considére une v.a.r. a valeurs
strictement positives »). Si ce n’est pas le cas :

x si X suit une loi usuelle, on peut se référer & ’ensemble image donné en cours. Par exemple, si
X < U([0,1]), on se permet d’écrire :

« Comme X — U([0,1]), on consideére : X (Q2) = [0, 1]. »

x si X ne suit pas une loi usuelle, on étudie 'ensemble : I = {z € R | fx(x) > 0}.
On se permet alors d’écrire :

« Dans la suite, on considére : X(Q) = 1. »

En décrétant la valeur de X(2), on ne commet pas une erreur mais on décide d’ajouter une
hypothése qui ne fait pas partie de I’énoncé. Cette audace permet de travailler avec un ensemble
image connu, ce qui permet de structurer certaines démonstrations (I’ensemble image étant connu,
on se rappelle que la fonction de répartition, par exemple, s’obtient par une disjonction de cas).

20



E2A 24 janvier 2026
Mathématiques

2.

Que vaut Fy (y) lorsque y < 0?7 Que vaut Fy(y) lorsque y > 17
On justifiera les réponses.

Démonstration.
e On note h: x — = — [z] de telle sorte que Z = h(X).
Comme : X (92) C ] — 0o, +00[, on obtient alors :

Y@ = (h(X))(©Q) = h(X(®)
h(] — oo, +o0[) C [0,1]

N

La derniére inclusion est obtenue de la maniére suivante.
Soit = € [0, +oo[. Par définition de la partie entiére : [z] < z < [z] + 1. Or :

z]<z<[z]+1 & 0<z—[z]<1 & 0<h(x)<1

Ainsi : Y/(Q) C [0,1].

« Soit y € R. Deux cas simples se présentent :

Fy(y) = P(Y <y]) = P(g) =0
x sty € [1,4o0[, alors : [Y < y] =Q, car Y(Q)

,,,,,,,,,,, C [0,1]. Donc :
Fy(y) = P([Y <y]) = P(Q) =1

Pour tout y < 0, Fy(y) = 0 et pour tout y > 1, Fy(y) = 1.

Commentaire

« Profitons de cette question pour faire un point sur la fonction partie fractionnaire = — x — [z].
Sa représentation graphique est la suivante :

Y

WFonction Tz — 7] P

« La fonction partie fractionnaire est un cas particulier de fonctions dites périodiques.

x Soit T' € [0, +oo[. Une fonction est dite T-périodique si :
Ve eR, f(x+T)= f(x)

Le réel T est appelé période de la fonction f.

x La représentation graphique sur R d’une fonction f T-périodique s’obtient par translation de
sa représentation graphique sur un intervalle de longueur T' (par exemple U'intervalle [0, 7).

La fonction partie fractionnaire est une fonction 1-périodique. Sa représentation graphique sur
R s’obtient bien par translation de sa représentation graphique sur un intervalle de longueur 1
(par exemple par translation de sa représentation graphique sur l'intervalle [0, 1]). -
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3. Justifier I'égalité entre événements : [Y =0] = |J [X =n].
En déduire : Fy(0) = 0.

Démonstration.

e Soit weN. On a:

>-<

(w)

a

(w)
(w)
(w)

X (w) est un entier positif

X](w) =0
[(X](w)

a

Il existe n € N tel que X(w) =n

t ¢ ¢ ¢ T

Il existe n € N tel que w € [X = n]

we U [X=n]
1€N

T

Onendéduit : [Y =0]= U [X =n].

Commentaire .

« Par définition, un événement est un ensemble. Démontrer 1’égalité de deux ensembles c’est
démontrer que tout élément du premier ensemble est dans le second et inversement. Ou
encore qu’un élément est dans le premier ensemble si et seulement si il est aussi dans le
second (c’est la maniére de procéder choisie ici).

o En terme d’événement, cela signifie que le premier événement est réalisé si et seulement si
le second événement est réalisé. Plus précisément, il existe w réalisant le premier événement
si et seulement si ce méme w réalise le second événement.

\. J

« Par ailleurs :

V<0 = [Y<0U[Y =0]
— Uy =0 (car Y (Q) = [0,1])
= [Y =0

On en déduit :
Fr(0) = B(IY =0))

= P ( U [X= n]) (d’apres le début de question)

neN
pacd (par o-additivité et car les événements de la famille
= Y P([X=n]) _ R : .
= ([X =n] )nEN sont deuz & deuz incompatibles)
+o0
= >0=0 (car X est une v.a.r. a densité)
n=0

On en conclut : Fy(0) = 0.
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4. Soit y un réel de l'intervalle 0, 1[.

n—+y

+oo
a) Montrer I'égalité : Fy (y) = Zo f(t) dt.

n

Démonstration.

« On note T'= [X]. Dans la suite, on considére X (Q2) = [0, +o0][.

On a alors : T(Q2) = N.

« La famille ([T = n] )nE
Ainsi, par la formule des probabilités totales :

Fy(y) =

— S R(m<X<nt1n[X<n+ty))
n=0

= +gozlf”([n@(<n+y])

n+y

y forme un systéme complet d’événements.

(par définition de'Y')

(par définition de
la partie entiére)

(cary € ]0,1])

(car X admet f

+o0o
- nZ::O n f(&) dt pour densité)
+oo [Nty
Ainsi, pour tout y € 10,1 : Fy (y) = > f(t) dt.
n=0 Jn
~
On a utilisé dans cette question I'égalité : [n < X <n+1N[X <n+y] = n< X <n+y].
Pour 'obtenir, il suffit de démontrer :
X <n+1N[X<n+yl = [X<n+y]

(D) Soit w € [X < n+y|. Alors X(w) < n+y. Ainsi :
Xw)<n+y<n+l1

On en conclut : w € [X <n+1].

Comme signalé dans la remarque précédente, ce résultat se démontre par double inclusion.
(Q) Soit w e [X <n+1]N[X < n+y|. Alors, en particulier, w € [X < n+y].

(cary < 1)

On obtient ainsi, & 'aide de 'hypothése initiale : w € [X <n+y|N[X <n+1].
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b) Montrer, en utilisant la question préliminaire, les inégalités :
n+y n+1
— Pour tout n entier naturel : / f(t) dt > y/ f(t) dt.

n n

n+y n+y

— Pour tout n entier naturel non nul : /
n

n—1+y
Démonstration.
« Soit n € N. On applique la question 1.b) avec :

x I = [0, +OO[

x g = f|[o,400] (vestriction de f & [0, +o0l).
La fonction g est continue et décroissante sur [0, +00l.

xc=nel,d=n+yecletb=n+1€l (onabienc<d<b).

1 b 1 d
b—c/ g(t) dt < d—c/ g(t) dt

foa <y [ o

n+l1 n+ car [n,n 00
L e S [T e G

Y

n+1

On a bien : /n+y ft)ydt > vy / f(t) dt.

et [n,n+1[ € [0,+00)

o Sous les mémes hypothéses, avec a =n—1+y et ¢ =n et d =n + y comme précédemment

(on a bien a < ¢ < d), on a, d’aprés la question 1.b) :

1 d 1 d
dc/ g(t) dt < da/ g(t) dt

1 n+y 1 n+y
S e [ swa

n—+y
On a bien : y /

n—1+y n

Commentaire

suivent logiquement.

haute d des deux cotés.

A premiére vue, il est difficile de faire le lien entre le résultat exposé dans cette question et

celui de la question 1.d). Il peut d’ailleurs sembler ardu de trouver les valeurs de a, b, c et d

pour lesquelles on doit appliquer le résultat. En réalité, on n’a guére le choix :

x dans la premiére inégalité & démontrer ici, les bornes basses des intégrales ont la méme
valeur n. Cela correspond a la premiére inégalité de 1.b) out 'on retrouve la méme borne
basse ¢ des deux cotés de I'inégalité. Une fois ¢ = n posé, les valeursb=n+1letd=n+y

x dans la deuxiéme inégalité a démontrer, les bornes hautes des intégrales ont méme valeur
n + y. Cela correspond a la deuxiéme inégalité de 1.b) ott 'on retrouve la méme borne

Finalement, cette question ne présente pas de difficulté majeure. D’ailleurs, I’énoncé fournit la
maniére de procéder en précisant qu’il s’agit d’utiliser la question préliminaire.

O]
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+oo Y +oo
c) En déduire : y/ f(t) dt < Fy(y) < / f(t) dt + y/ f(t) dt, puis I'encadrement :
0 0 Yy

y<Fy(y) <y+M

Démonstration.

o D’aprés la question précédente, on a :

n n+1
vneN,/+y Ft) dt > y/+ Ft) dt

Soit m € N. En sommant ces inégalités, on obtient :

nio " a s 3 <y /n S dt)

n n=0
I

m n+1 m+1 ( lati
B par relation
4 ngo fleydt =y /0 f(¢) dt de Chasles)

n

Or :

m n+y
x d’aprés la question 4.a), la quantité ) / f(t) dt admet une limite finie lorsque m
n=0 Jn
tend vers +oo.
+oo
x l'intégrale f(t) dt est convergente car f est une densité de probabilité. On en déduit

0
que la quantité de droite admet elle aussi une limite finie lorsque m tend vers +oo.
Finalement, par passage a la limite dans I’inégalité, on obtient :

too [ty +o0
Z f(t) dt > vy / f(t) dt
n=0 Jn 0

I

Fy (y)

+oo
Ainsi @ y /0 f(t) dt < Fy(y).

o D’aprés la question précédente, on a :
n—+y n—+y
Vn € N, / FO) dt <y / () dt
n n—14+y

Soit m € N*. En sommant ces inégalités, on obtient :

m n+y m n+y
nzzjl /n f(t) s n=1 <y /71—1+y f(t) dt)

S [ swa- [T rwa o3[ jwa =y [T rwa

n=0 n=1 —1+y Yy
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Finalement, par passage a la limite dans I'inégalité (autorisé pour les raisons précédentes), on
obtient :
oo [nty y +oo
> [ rwa- [ swd <y [ wa
n=0 0 Y

n

+o00
Ainsi : Fy(y) < /Oy f(t) dt+y / f(t) dt.
y

o Par ailleurs :

+0o0
x / f(t) dt =1 car f est une densité de probabilité.

+oo +o0o
x / f@) dt = / f(t) dt car f est nulle en dehors de [0, +o0].
0

+oo
F(t) dt =1

0

On a de plus, comme y > 0 alors [X > y] C [X > 0] et :

+00 +oo
/ f)ydt = P([X>y]) < P([X>0]) :/ fit)ydt =1

Y

+oo
Par multiplication par y > 0, on obtient : y / ft) dt < y.
y

Enfin, comme f est décroissante :
vt e [0,y], f(t) < f(0) = M

Par croissance de 'intégrale, les bornes étant dans l'ordre croissant (0 < y), on a :

/Oy F) dt < /Odet = My

y
Commey<1etM:f(0)>0,/ fit)ydt < My < M.
0

En combinant tous ces résultats, on obtient bien : y < Fy(y) <y + M. 0
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Partie II - Premier chiffre significatif d’une variable de Pareto

—— siz>1
Pour tout réel X strictement positif, on définit la fonction gy sur R par gy :  — aA -

0 sinon

5. Montrer que pour tout réel A strictement positif, g\ est une densité de probabilité sur R (loi dite
de Pareto).

Démonstration.
Soit A > 0.
o Tout d’abord, la fonction g est :
x continue sur | — oo, 1[ car constante sur cet intervalle.
x continue sur |1, 4+-oo[ comme inverse de la fonction x + 22! :
— continue sur |1, o0/,

— et qui ne s’annule pas sur |1, +oo[.

La fonction f est donc continue sur R sauf éventuellement en un nombre fini de points.

o Soit € R. Deux cas se présentent :

x six €| —o00,1], alors : gx(xz) =0 > 0.
A

x six € [1,+00], alors comme A >0 et 2 >0, ona: gr\(z) = 7 20.
*********** x

Finalement : Va € R, gx(z) > 0.

+o0
o Il reste & démontrer que 'intégrale / gx(x) dx converge et vaut 1.
—o0
Tout d’abord :
+oo +oo
[ awda = [ g
—00 1

car gy est nulle en dehors de [1, +o0l.
La fonction gy est continue par morceaux sur [1, +0o0l.

+o00
Ainsi, 'intégrale / ga(z) dx est impropre seulement en +oo.
1

Soit B € [1,400].

B B 1 B N1
t)ydt = As—dt = A t T dt
/1 g)\( ) /1 A+ /1

~A B 1 B
:X[”T_X] :—1[:6)\} (car X #0)
1 1
B 1 1
B B 1
T (car X > 0)
N B B-+oo car
“+oo
Ainsi, I'intégrale impropre / gx(t) dt est convergente et vaut 1.
—0
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On en conclut que gy est bien une densité de probabilité.

Commentaire .

o De maniére générale, on dit d’une v.a.r. suit la loi de Pareto de paramétres a > 0 et
b > 0 si elle admet pour densité la fonction f définie par :

0 sit<b
f ot o= pe
a—taJrl sit>b

Dans cet énoncé, on étudie donc le cas particulier ou b = 1.

o Pour démontrer qu’une fonciton est une densité de probabilité, il est nécessaire de dé-
montrer qu'une intégrale impropre est convergente et de valeur 1. Ce type de question
exige donc un calcul et non un résultat de convergence comme le théoréme de compa-
raison des intégrales généralisées de fonctions continues positives.

+oo
o On peut toutefois noter que démontrer la convergence de / ey dt est simple. On
1
reconnait en effet une intégrale de Riemann, impropre en +oo et d’exposant A+1 > 1. 0

\ J

Dans toute la suite, on note Z, une variable aléatoire admettant g, pour densité.
6. Déterminer la fonction de répartition G de Zy.

Démonstration.

Soit x € R. Deux cas se présentent :

x six € ] —00,1[. Comme f est nulle en dehors de [1, 4+00] :

G,\(x) = ]P’([Y,\gx]) = /x g)\(t) dt = 0

x six € [l,+o0]:

(par relation de Chasles et car
f est nulle en dehors de [1,+00])

(en reprenant le calcul de la
= 1-— question précédente pour
B=ze€e[l,+00])

0 siz <1

Finalement : G : z — R
1-— () siz>1
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7. On note In la fonction logarithme népérien, et log la fonction logarithme décimal.

In(z)
In(10)

On pose X =log(Z,), et on note F) la fonction de répartition de X).
a) Etablir, pour tout réel z, 'égalité : F)(z) = G,\(lom).

Cette fonction est définie sur |0, 400 par : log(z) = pour tout réel z strictement positif.

Démonstration.

« Commencons par déterminer X (12).
Notons h : z — log(x), de sorte que Xy = h(Z)).

On considére Z),(Q2) = [1,4+o00[. On en déduit :

XA(€) (h(20))(Q) = h(2A(%))

= h([1,+o0[)

. . (car la fonction h est continue et
N [h(l)’xggloo W)l strictement croissante sur [1,+0o0[)
= [07 +OO[

Et ainsi : X\(Q) = [0, +o0].

« Soit x € R. Deux cas se présentent :
x six <0, alors [X) < 2] =@ car X»(Q2) = [0, +o0[.

)
o
=)
o

Fx(z) =P([X\<a]) =P(@) =
En particulier, comme x < 0 alors 10” < 1 et G(

)
On a bien : Vo < 0, F)\(z) = 0 = G,(10%).

B ln(Z)\) . iy
=P ([111(10) < m]) (par définition de log)
= P([In(Z») < = In(10)]) (car In(10) > 0)

= P([Z\ <exp(z In(10))]) (par stricte croissance de exp sur R)
—_ G}\(lom) (C(J,T’ er In(10) _ eln(lO“) — 1038)

0 six <0

On obtient finalement : Fy : x — { GA(109) siz >0

Commentaire

« On s’est permis de considérer : Z(£2) = [1, +-00[ conformément & la remarque faite en début
de Partie I. Une telle hypothése assure la bonne définition de la v.a.r. X, = log(Z)) (sans
précision sur Z,(12), la v.a.r. Zy est seulement presque stirement bien définie).

o Lors de I'étude du 2°™¢ cas, 'argument x > 0 n’est pas utile. L’esprit du sujet était
d’ailleurs plutét de démontrer, dans cette question : Vo € R, F\(z) = Gx(10%) et de
reporter la disjonction de cas dans la question suivante. Dans cette correction, on a opté
pour la présentation habituelle qui permet de mettre en avant le fait que la fonction F) est

définie par cas.
L O]
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b) En déduire que X suit une loi exponentielle dont on précisera le paramétre en fonction de .

Démonstration.
Soit = € [0, +oo].

e Ona:
(d’apres la
— X
Fy(z) = GA(10%) question précédente)
1
= 1- 0P (d’apres la question 6.)
1
= e
B exp (Az In(10))
1
— —_ —1In(10) A
o _eln(lo)/\x = 1—e O
e Ainsi :

0 siz <0
Fy:z—
1 _e—ln(l()))\:(} siz>0

On reconnait la fonction de répartition associée a la loi € (In(10) A).

On en conclut : X — & (In(10) A).

Commentaire \

o Généralement, lorsque ’on considére une v.a.r. Z qui suit une loi de Pareto de paramétre
a>0et b>0 (la définition est donnée dans la remarque de la quesiton 5.), on introduit

Z
lavar. X =In (b . On démontre alors que X suit une loi exponentielle.

Plus précisément, on a : X < & (a).

o Dans ce sujet, on étudie la loi de Pareto avec paramétre b = 1. En lieu et place de Z),

1
choix de I’énoncé de travailler avec le logarithme en base 10 au lieu du logarithme népérien

peut donc paraitre surprenant. Il introduit une difficulté qui ne parait pas nécessaire (avec
la présence artificielle de In(10)). Ce choix est en réalité expliqué par la question 9. : le
travail a ’aide du logarithme décimal est classique lors de I’étude de la loi de Benford.

Z
on aurait pu introduire 7 = In <)‘> =1In(Z)). D’aprés ce qui précéde : T\ < £ (N). Le

30



E2A 24 janvier 2026
Mathématiques

8. On pose Y) = {X)\}, la partie fractionnaire de X).

Montrer, en utilisant les résultats de la partie I, que pour tout réel y de U'intervalle ]0, 1] :

lim P([Ya<y])=y

A—01

En déduire que, lorsque A tend vers 0, Y, converge en loi vers une variable aléatoire suivant la loi
uniforme sur l'intervalle [0, 1].

Démonstration.

« D’apreés la question précédente : X — £ (In(10) A).

On en déduit que la fonction fy ci-dessous est une densité de la v.a.r. X,.

0 sixz <0
f/\ T =
In(10) X e~ 2(0AZ i 42> 0

o La fonction f) vérifie les propriétés :
— f est nulle sur | — 00,0[;
— la restriction de f a [0, 4+o00] est continue et décroissante.
On pose alors M = f,(0) = In(10) A, le maximum de fy sur R.

La v.a.r. X vérifie donc les propriétés permettant d’appliquer les résultats de la Partie I.

o D’aprés la Partie I, la v.a.r. Y admet pour fonction de répartition la fonction Fy, suivante :

0 sty <0
Fy, :y— ¢ Fy,(y) siye[0,1]
1 siy=>1
Enfin, d’aprés la question 4.¢) : Vy € ]0,1[, vy < Fy,(y) < y+1In(10) A

« Soit y € ]0,1[ et soit A > 0. On a :

lim =
e YTy

lim y 4 In(10) A =y,
x lim y+In(10)A =y

Par théoréme d’encadrement, on a : lim+ Fy,(y) =yv.
A—=0

« Soit y € R. Quatre cas se présentent :

x sl y < 0 alors F; =0 — 0.
siy alors Fy, (y) favd

x siy =0 alors Fy, (0) = 0.

En effet, comme Fy, est la fonction de répartition d’une v.a.r. & densité, alors Fy, est continue
sur R. Par continuité en 0, on obtient :

Fy,(0) = lim Fy,(y)= lim 0=0

y—0— y—0—

Fy,(0)=0

On en déduit alors : Fy, (0) =0 — 0.
A—=0t
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x siy € 10,1] alors Fy, (v) /\3>+ y d’aprés ce qui précede.

x siy > 1alors Fy, (y) =1 A$>+ 1.

Finalement : Vy € R, Fy, (y) — F(y) ou F est la fonction :
A—0

0 siy<O
F:y—<qy siyel0,1]
1 siy=>1

On reconnait la fonction de répartition associé a la loi uniforme sur [0, 1].

On a donc bien démontré que lorsque A tend vers 0, Yy converge en loi vers Y
avec Y — U([0,1]).

Commentaire \

o On demande dans cette question de démontrer que « lorsque A tend vers 0, Y) converge en
loi vers un v.a.r. suivant la loi uniforme sur [0, 1] ». Or, conformément au programme officiel,
on définit la convergence en loi d’une suite de v.a.r. (Y,),en+ vers une v.a.r. Y.

La question, telle que posée ici, n’entre donc pas dans le cadre du programme.

« Il est cependant assez simple d’adapter cette question au programme. Pour ce faire, il suffit
de considérer la suite de v.a.r. (V,,)nen+ ot pour tout n € N* : V,, = Y1 (on « pose » A = %)
On obtient ainsi : V, —= V out V < U([0,1]).

n——+0oo 0

\. J

9. Pour tout réel x supérieur ou égal a 1, on note a(x) le premier chiffre dans I'écriture décimale de x.
C’est un entier de l'intervalle [1,9].

Par exemple, o(50) =5 et «(213,43) = 2.
a) Pour tout k € [1,9], montrer I’équivalence :
a(z) =k < {log(z)} € [log(k),log(k +1)]
Démonstration.
Soit 2 > 1 et soit k € [[1,9].
« On procéde tout d’abord par équivalence.

{log } € [log(k),log(k+ 1)[
< log(k {log } < log(k +1)

In(k +1)
m(10) < {log(@)} < In(10)

& In(k) < {log(z)} xIn(10) < In(k+1) (car In(10) > 0)

(car la fonction exp est

<
s oxp ({ log(x)} % ln(lO)) < k+l strictement croissante sur R)

¢

k < exp(In(100e@})) < k+1
& k< 10le@) < 41

& [10{105(1)}] =k (par définition de la partie entiére)

Ve > 1, Vk € [1,9], {log(x)} S [log(k),log(k + 1)[ VAN [10{10g(9:)}] —k
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Commentaire \

o Il est & noter que 'on part de la propriété de I’équivalence qui a la formulation la plus
complexe. C’est une maniére classique de procéder : on part du plus complexe pour aller
vers le plus simple. En partant dans ce sens, cette premiére partie de la démonstration ne
présente pas de difficulté majeure. Il s’agit simplement de remplacer la fonction log par
sa définition et de faire en sorte de simplifier les inégalités.

o L’énoncé ne détaille par les propriétés de la fonction log, qui n’est autre que la fonction
logarithme en base 10. Cette fonction vérifie des propriétés similaires a la fonction loga-
rithme népérien (qui n’est autre que le logarithme en base €). On a notamment :

x la fonction log (logarithme en base 10) est strictement croissante et continue sur
10, +o00]. Elle réalise une bijection de ]0, +o00[ sur | — 0o, +00[.
Sa bijection réciproque est la fonction x — 10*. En particulier :

y=10" < x =log(y)
Yy € 10, +oo, 108 = 4 et Yy € ] — 00, +0o0], log(10Y) =y
x pour tout (x,y) € 0,400 x ]0,+00[, on a :

log (ar: X y) = log(z) + log(y) et log <:yc> = log(z) — log(y)

\ J

o Il reste alors a démontrer : [10{10%‘(90)}} = a(x).

x Tout d’abord, par définition : Vy € R, {y} =y — [y].
Pour y = log(), on obtient : {log(z)} = log(z) — [log(z)]. Ainsi :

10{os@)}  —  qlos(@)— [log()]

10log(z)
10Mlog(z)]

T

10Mlog(z)]

10{log@y — %

10[log(2)]

x Comme z > 1, il existe un unique entier r € N tel que :
10" < z < 107!

(r renseigne sur l'ordre de grandeur de x : sir =0, x est de l'ordre des unités; sir =1, x
est de l'ordre des dizaines; si v =2, x est de l'ordre des centaines ... )

Cet entier r s’exprime aisément en fonction de x. En effet :

10" < z < 107!

(par stricte croissance de la

<
& r < log(z) < r+1 fonction log sur]0,4o00[)

& [log(x)] =7
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x Notons alors : f(z) =z — ax) x 10",

(a(x) est le premier chiffre significatif; a(x) x 10" est l'ordre de grandeur; ((z) est le
nombre qui commence & partir du deuxiéme chiffre significatif de x)

On a:
x = ax) x 10" + B(x)
donc 13(; = a(z)+ ﬁ(ogi)
Par définition : f(z) € [0,10" donc : 51(0) € [0,1]. On en déduit :
a(r) < az)+ ﬁ(of) < alz)+1

I

T

107

On en conclut : a(z) = [%T} = [m]

En combinant tous les résultats précédents, on obtient, pour tout x > 1 et tout k € [1,9] :
{log(x)} € [log(k),log(k +1)[ < [10{10g($)}] =

& [L]:k

10Mlos ()]
& ofr)=k
~
La démonstration a(z) = [10{log(w)}] est délicate. Il est vivement conseillé de laisser de

cOté cette partie de la question. C’est I'une des derniéres questions du sujet. On peut donc
penser que le concepteur a pour but ici d’offrir un challenge aux meilleurs candidats. Il est
fort probable que le baréme d’une telle question soit peu précis et qu’on laisse le correcteur
féliciter toute tentative raisonnable de démonstration.

—

[

b) On note C) = a(Z A) la variable aléatoire prenant comme valeur le premier chiffre de Z).
1
Montrer, pour tout k € [1,9] : lim P([Cy =k]) = log (1 + )
A—0t k

Cette loi limite obtenue pour le premier chiffre de Z) est appelée loi de Benford.

Démonstration.
Soit A > 0.

« On rappelle : Z,(Q2) = [1,+o0[. On en déduit :
OO = (alz ) — a(Z0()
= a(
1,

]]

Et ainsi : Cy\(Q2) = [1, 9].
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e Soit k € [[1,9]]

P([Ch=k) = P([a(Z))=Fk])
- P([log(k) < {log(Z)\)} < 10g(k+1)]) ;i;zggi;tls)question
= P([log(k) < {X0} < log(k+1)])
= P([log(k) < Yy < log(k+1)])
favd P([log(k) < Y < log(k+1)]) g?}eip;fiaz,??[i)%ﬁo;; 8.b)

Enfin :

(car'Y est une

P([log(k) < Y < log(k+1)]) = Fy(log(k+1))— Fy(log(k)) var. i densité)

(car log(k + 1) € [0,1]

= log(k+ 1) —log(k) et log(k) € [0,1])

= log <k—]:1> = log (1 + ;)

1
Finalement, on a bien : Vk € [1,9] : lim P([Cy = %) =log (1 + — ).
inalement, on a bien [1,9] Jim, ([Cx=K]) 0g< +k:>
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