
E2A Mathématiques appliquées

Planche HEC : chaînes de Markov

Exercice avec préparation 1
Soit N un entier supérieur ou égal à 2.
On considère une playlist de N morceaux de musique, jouée en mode aléatoire avec les règles suivantes :

• Le premier morceau joué est le numéro 1.

• Si le morceau en train d’être joué est le numéro i, alors le numéro du prochain morceau est choisi
aléatoirement et équiprobablement dans J1, NK \ {i} (autrement dit, on n’écoute pas deux fois de
suite le même morceau).

On note, pour tout n ∈ N∗, Xn la variable aléatoire égale au numéro du ne morceau écouté. En
particulier, X1 = 1.

1. Question de cours :

a) Définition et caractérisation d’un état stable d’une chaîne de Markov.

b) Si la chaîne de Markov (Xn) converge en loi vers X et que π est un vecteur ligne représentant
la loi de X, que peut-on dire de π ?

2. a) Expliquer pourquoi (Xn) est une chaîne de Markov homogène à N états.

b) Représenter le graphe probabiliste pour N = 2 et pour N = 3 puis donner la matrice de
transition, notée M , dans le cas général.

c) Soit J la matrice de MN (R) dont tous les coefficients sont égaux à 1. Exprimer M en fonction
de J et de la matrice identité IN .

d) Calculer, pour tout entier n > 1, Mn. On exprimera le résultat comme une combinaison linéaire
des matrices IN et J .

e) Déduire de la question précédente une fonction Python calcul_puis_M qui prend en entrée
deux paramètres n et N et renvoie en sortie la matrice Mn.

3. a) Déterminer, pour tout entier n > 1, la loi de Xn. Préciser pour n = 2.
La suite (Xn) converge-t-elle en loi ?

b) Montrer que E1(M) = EN (J) puis déterminer les états stables de la chaîne de Markov.

c) Commenter ces résultats en lien avec une possible réciproque à la question 1.b).

4. Soit n ∈ N∗.
a) Les variables aléatoires Xn et Xn+1 sont-elles indépendantes ?

b) Calculer E(Xn) et E(X2
n) puis montrer que E(XnXn+1) =

N(N + 1)

2(N − 1)
E(Xn)− 1

N − 1
E(X2

n).

c) Calculer, en cas d’existence, lim
n→+∞

Cov(Xn, Xn+1) et lim
N→+∞

Cov(Xn, Xn+1).
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Réponses de l’exercice avec préparation 1 :
1. a) Soit π ∈M1,N (R). On dit que π est un état stable si

• πM = π où M est la matrice de transition
• tous les coefficients de π sont positifs et leur somme est égale à 1 (π représente une loi de
probabilité finie).

Caractérisation : π est un état stable si et seulement si
• tπ est un vecteur propre de tM associé à la valeur propre 1

• tous les coefficients de π sont positifs et leur somme est égale à 1.
b) On peut alors affirmer que π est un état stable de la chaîne de Markov.

2. a) • X1(Ω) = {1}, X2(Ω) = J2, NK et pour tout entier n > 3, Xn(Ω) = J1, NK.
• Pour tout n ∈ N, pour tout (i, j) ∈ E2 et pour tout (i0, . . . , in−1) ∈ En, on a

P[Xn=i]∩[Xn−1=in−1]∩···∩[X0=i0] ([Xn+1 = j]) = P[Xn=i]([Xn+1 = j]) =

{
1

N−1 si i 6= j

0 si i = j

donc (Xn) est une chaîne de Markov à N états.
• Enfin, la probabilité P[Xn=i]([Xn+1 = j]) ne dépend pas de n donc cette chaîne de Markov est
homogène.

b) Pour N = 2 :
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La matrice de transition est

M =



0 1
N−1

1
N−1

1
N−1

1
N−1

1
N−1

1
N−1 0


c) M =

1

N − 1
(J − IN ).

d) Soit n ∈ N∗. Les matrices IN et J commutent.
On remarque que J2 = NJ et donc, par récurrence immédiate, pour tout k ∈ N∗, Jk = Nk−1J .
Par binôme de Newton,

Mn =
1

(N − 1)n

n∑
k=0

(
n

k

)
Jk(−IN )n−k

=
1

(N − 1)n

(
(−1)nIN +

(
n∑

k=1

(
n

k

)
(−1)n−kNk−1

)
J

)
=

1

(N − 1)n

(
(−1)nIN +

1

N

(
n∑

k=1

(
n

k

)
(−1)n−kNk

)
J

)
=

1

(N − 1)n

(
(−1)nIN +

1

N
((N − 1)n − (−1)n) J

)
=

(−1)n

(N − 1)n
IN +

1

N

(
1− (−1)n

(N − 1)n

)
J

e) On propose la fonction suivante :

1 def calcul_puis_M(n, N):
2 I = np.eye(N)
3 J = np.ones([N,N])
4 c = ((-1) ** n) / ((N - 1) ** n)
5 return c * I + (1 / N) * (1 - c) * J

3. a) Notons, pour tout n ∈ N∗, Vn le ne état probabiliste de la chaîne de Markov. En particulier,

V1 =
(
1 0 0

)
On démontre à l’aide de la formule des probabilités totales que, pour tout n ∈ N∗,

Vn+1 = VnM

Par récurrence immédiate, pour tout n ∈ N∗,

Vn = V1M
n−1

donc Vn est la première ligne de la matrice Mn−1.

Notons un =
1

N

(
1− (−1)n−1

(N − 1)n−1

)
. On a alors

∀k ∈ J1, NK, P([Xn = k]) =


(−1)n−1

(N − 1)n−1
+ un si k = 1

un si 2 6 k 6 N

En particulier, X2 ↪→ U(J2, NK).
Étude de la convergence en loi :
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• Si N = 2 : pour tout n ∈ N∗,

P([Xn = 1]) =
1 + (−1)n−1

2

P([Xn = 2]) =
1− (−1)n−1

2

les suites (P([Xn = 1]))n>1 et (P([Xn = 2]))n>1 n’admettent pas de limite donc (Xn) ne converge
pas en loi.

• Si N > 3 : pour tout k ∈ J1, NK,

lim
n→+∞

P([Xn = k]) =
1

N

donc Xn
L−→

n→+∞
X où X ↪→ U(J1, NK).

b) Soit U ∈MN,1(R).

U ∈ E1(M) ⇐⇒ MU = U

⇐⇒ 1

N − 1
(J − IN )U = U

⇐⇒ (J − IN )U = (N − 1)U

⇐⇒ JU = NU

⇐⇒ U ∈ EN (J)

Or, il est clair que rg(J) = 1 donc dim(E0(J)) = N − 1 par théorème du rang. On en déduit
que dim(EN (J)) 6 1. De plus,

J

1

1

 =

N
N

 = N

1

1


donc dim(EN (J)) > 1 et finalement

EN (J) = Vect


1

1




D’autre part, M est symétrique donc π ∈M1,N (R) est un état stable de la chaîne de Markov si
et seulement si

• tπ est un vecteur propre de M associé à la valeur propre 1

• tous les coefficients de π sont positifs et leur somme est égale à 1.

Il y a un unique vecteur qui vérifie ces deux conditions et il s’agit du vecteur π =
(
1
N

1
N

)
.

c) Le cas N = 2 fournit un contre exemple : il existe un état stable mais la suite (Xn) ne converge
pas en loi.

4. Soit n ∈ N∗.
a) • X1 est constante donc X1 et X2 sont indépendantes

• On suppose maintenant que n > 2. On sépare deux cas.
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× Cas N = 2. On a vu que

P([Xn = 1]) =
1 + (−1)n−1

2
=

{
1 si n est impair
0 si n est pair

On en déduit que les événements [Xn = 1] et [Xn+1 = 1] sont indépendants, puis, par pas-
sages aux complémentaires successifs, que

[Xn = 1] et [Xn+1 = 2] sont indépendants
[Xn = 2] et [Xn+1 = 1] sont indépendants
[Xn = 2] et [Xn+1 = 2] sont indépendants

donc Xn et Xn+1 sont indépendantes.

× Cas N > 3. Alors on a
[Xn = 2] ∩ [Xn+1 = 2] = ∅

or
P([Xn = 2]) 6= 0 et P([Xn+1 = 2]) 6= 0

donc Xn et Xn+1 ne sont pas indépendantes.

b)

E(Xn) =
N∑
k=1

kP([Xn = k])

=
(−1)n−1

(N − 1)n−1
+ un +

N∑
k=2

kun

=
(−1)n−1

(N − 1)n−1
+ un

N∑
k=1

k

=
(−1)n−1

(N − 1)n−1
+ un

N(N + 1)

2

=
(−1)n−1

(N − 1)n−1
+
N + 1

2

(
1− (−1)n−1

(N − 1)n−1

)

puis, de manière similaire,

E(X2
n) =

N∑
k=1

k2P([Xn = k])

=
(−1)n−1

(N − 1)n−1
+ un +

N∑
k=2

k2un

=
(−1)n−1

(N − 1)n−1
+ un

N∑
k=1

k2

=
(−1)n−1

(N − 1)n−1
+ un

N(N + 1)(2N + 1)

6

=
(−1)n−1

(N − 1)n−1
+

(N + 1)(2N + 1)

6

(
1− (−1)n−1

(N − 1)n−1

)
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Enfin,

E(XnXn+1) =
N∑
i=1

N∑
j=1

ijP([Xn = i] ∩ [Xn+1 = j])

=
N∑
i=1

N∑
j=1

ijP([Xn = i])P[Xn=i]([Xn+1 = j])

=
N∑
i=1

iP([Xn = i])
∑

16j6N
j 6=i

j
1

N − 1

=
1

N − 1

N∑
i=1

iP([Xn = i])

((
N∑
j=1

j

)
− i

)

=
1

N − 1

N∑
i=1

iP([Xn = i])

(
N(N + 1)

2
− i
)

=
N(N + 1)

2(N − 1)

N∑
i=1

iP([Xn = i])− 1

N − 1

N∑
i=1

i2P([Xn = i])

=
N(N + 1)

2(N − 1)
E(Xn)− 1

N − 1
E(X2

n)

c) • Étude de lim
n→+∞

Cov(Xn, Xn+1).

× Cas N = 2. On a vu que pour tout n ∈ N∗, Xn et Xn+1 sont indépendantes, donc

Cov(Xn, Xn+1) = 0 −→
n→+∞

0

× Cas N > 3.

lim
n→+∞

Cov(Xn, Xn+1) =
N(N + 1)

2(N − 1)

N + 1

2
− 1

N − 1

(N + 1)(2N + 1)

6
−
(
N + 1

2

)2

= −N + 1

12

• Étude de lim
N→+∞

Cov(Xn, Xn+1).

× Cas n = 1. On a vu que X1 et X2 sont indépendantes, donc

lim
N→+∞

Cov(X1, X2) = 0

× Cas n > 2. On cherche un équivalent lorsque N → +∞. On remarque que

E(Xn) ∼
N→+∞

N

2
et E(X2

n) ∼
N→+∞

N2

3

donc
Cov(Xn, Xn+1) =

N(N + 1)

2(N − 1)
E(Xn)− 1

N − 1
E(X2

n)− E(Xn)E(Xn+1)

avec

N(N + 1)

2(N − 1)
E(Xn) ∼

N→+∞

N2

4
,

1

N − 1
E(X2

n) ∼
N→+∞

N

3
, E(Xn)E(Xn+1) ∼

N→+∞

N2

4

Il suit que

lim
N→+∞

Cov(Xn, Xn+1)

N2
=

1

4
− 0− 1

4
= 0
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et que lim
N→+∞

Cov(Xn, Xn+1)

N
est pour l’instant une forme indéterminée. Il faut donc être

plus subtil et calculer un développement asymptotique des termes
N(N + 1)

2(N − 1)
E(Xn) et

E(Xn)E(Xn+1).
Après calculs, on obtient pour n > 3

E(Xn) =
N

2
+

1

2
+ o

N→+∞
(1)

E(Xn)E(Xn+1) =
N2

4
+
N

2
+ o

N→+∞
(N)

N(N + 1)

2(N − 1)
E(Xn) =

N2

4
+

3N

4
+ o

N→+∞
(N)

donc
N(N + 1)

2(N − 1)
E(Xn)− E(Xn)E(Xn+1) =

N

4
+ o

N→+∞
(N)

et finalement,

lim
N→+∞

Cov(Xn, Xn+1)

N
=

1

4
− 1

3
= − 1

12

ce qui permet d’écrire

Cov(Xn, Xn+1) ∼
N→+∞

− N

12
puis lim

N→+∞
Cov(Xn, Xn+1) = −∞

On laisse le cas n = 2 au lecteur ou à la lectrice acharné·e, cette dernière question se situant
probablement déjà au delà de ce qui peut être attendu d’un·e candidat·e à l’oral d’HEC
dans le temps imparti.
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