E2A

TP11 : Loi faible des grands nombres
et méthode de Monte Carlo

Commencer par importer les bibliothéques suivantes dans chaque fichier Python utilisé :
import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt

I. Loi faible des grands nombres

Théoréme 1 (Loi faible des grands nombres).
Soit (Xi)pen+ une suite de variables aléatoires.
On suppose que les v.a.r. Xy :

x sont indépendantes,

x admettent toutes la méme espérance m,

x admettent toutes la méme variance o>.
1=
On pose, pour tout n € N*, X,, = =Y X} (moyenne empirique). On a alors,
Ng=1

Ve > 0, HETMP([‘Z—m‘>5]):O

Remarque

« Il est fréquent de considérer (notamment pour les simulations informatiques) une suite (Xj)gen+ de
v.ar. :

x indépendantes,
x de méme loi,
x admettant une espérance et une variance.

Ces hypothéses sont plus strictes que celles énoncés par la LfGN.
On peut donc bien évidemment utiliser la LfGN dans ce cadre.

o La loi faible des grands nombres se comprend de la maniére suivante : lorsque n est grand, il est peu
probable que X,, prenne une valeur éloignée de m. Autrement dit, lorsque n est grand, il est trés
probable que X,, prenne une valeur proche de m.

A retenir :

Une simulation de X,, pour n grand donne une approximation de m = E(X;)

o Ce résultat est plus général qu’il n’y parait, car tout calcul de probabilité peut s’interpréter comme
le calcul de 'espérance d’une variable aléatoire bien choisie. En effet, si A est un événement, alors
la variable aléatoire X = 14 suit une loi de Bernoulli de paramétre p = P(A) et donc E(X) = P(A).
Cette remarque est trés importante et est au centre de beaucoup de questions d’informatique aux
concours.

o On appelle méthode de Monte Carlo toute méthode de calcul approché basée sur la loi faible des
grands nombres.

E2A

II. Structure classique de la partie informatique aux concours

Dans les énoncés de concours, la LGN apparait souvent dans les questions d’informatique. Considérons
un énoncé consistant & étudier une v.a.r. X qui admet une variance. On trouvera fréquemment les
questions suivantes.

1. Ecrire une fonction / compléter une fonction / expliquer ce que fait une fonction d’en-téte def
simuX () : permettant de simuler la v.a.r. X. Cette fonction peut éventuellement prendre des para-
métres d’entrée. Généralement, cette simulation peut étre obtenue :

x en écrivant une fonction permettant de simuler I'expérience aléatoire considérée. La valeur si-
mulée de X est calculée lors de cette expérience (cas classique lorsqu’on travaille avec des v.a.r.
discrétes).

x ou bien parce que X s’écrit a I'aide d’autres v.a.r. qu'on peut facilement simuler (X est une
transformée de v.a.r. qui suivent des lois usuelles par exemple).

2. Ecrire un programme / compléter un programme / expliquer ce que fait un programme permettant
d’obtenir une valeur approchée de I'espérance de la v.a.r. X.
Démonstration.
o L’idée naturelle est la suivante :

x on simule un grand nombre N de fois la v.a.r. X.

(généralement, on prend N = 10* ou 10° ou 10%)

x on détermine la moyenne arithmétique des résultats obtenus (i.e. la réalisation de la moyenne
empirique X,,).

def approxEsp(N):
S =0
for i in range(N):
S =8 + simuX()
return S / N

[PN VR T SR

Autre possibilité : on peut créer un tableau/une liste contenant les N simulations de la v.a.r. X
puis déterminer la moyenne arithmétique de ces observations & ’aide des opérations prédéfinies
en Python.

def approxEsp(N):
L=1]
for i in range(N):
L.append (simuX())
return np.mean(L)

B e N =

o Mathématiquement parlant, cela consiste a considérer un N-échantillon (X1, ..., Xy) de la v.a.r.
X. Autrement dit, les v.a.r. Xq, ..., Xy sont :

x indépendantes,
x de méme loi que X.

Comme X admet une variance, on se trouve dans un cadre (plus strict) permettant d’appliquer
la LEGN. Simuler ce N-échantillon, c’est en obtenir un N-uplet d’observations (z1,...,zn) (c’est
ce que contient la liste L dans le programme précédent). La LfGN permet d’affirmer que :

1 N
— o~ E(X
N;w (X)

E2A

III. Exemples d’approximation d’une espérance

III.1. Un exemple simple et vérifiable

Soit X la v.a.r. dont la loi est donnée par :
« X(©2) =40,1,2}

7 1 1
_ = 1 = — = = —
SP(X = 1)) = o, P(X = 2)

» Vérifier que cela définit bien une loi de probabilité.

« B(X =0]) =

» Calculer E(X).

» Compléter la fonction suivante pour qu’elle renvoie une simulation de la v.a.r. X.

def simuX():
r =
if
return 0O
elif
return 1

else:
return 2

o0 N o jov I

» Expliquer ce que renvoie le programme suivant et le tester plusieurs fois avec N = 10* puis avec
N = 10° et enfin avec N = 10°.

def mystere(N):
L=1]
for k in range(N):
L.append (simuX())
return np.mean(L)

[[SA S PN VI R

E2A

II1.2. Un autre exemple vérifiable mais ot le calcul est moins simple

Soit n € N*. On considére une urne contenant n boules, numérotées de 1 & n. On effectue un unique
tirage dans cette urne et on note le numéro de la boule obtenue. Si k désigne le numéro de la boule tirée,
alors on retire de I'urne toutes les boules portant un numéro strictement supérieur a k. On effectue
ensuite une seconde série de tirages successifs et avec remise dans I'urne, jusqu’a-ce qu’on obtienne la
boule numéro 1. On note X, la variable aléatoire égale au nombre de tirages effectués lors de cette
seconde série de tirages.

» Compléter la fonction Python suivante pour qu’elle renvoie une simulation de la v.a.r. X,,.

def simuX(n):
2 k =
3 return

|=

» Compléter la fonction Python suivante pour qu’elle renvoie une approximation de E(X,,).

1 def approxEsp(N, n):
2 E = np.zeros(N)
3 for i in range(N):
4 E[i] = simuX(n)
5 return
» Le programme Python
1 N = 10*x5
2 abscisse = [n for n in range(1,100)]
3 ordonnee = [approxEsp(N, n) for n in abscisse]
4 plt.plot(abscisse, ordonnee, ’.7%)
renvoie
50 1 /.o
e
40 >

301 v

o
20 /
101
0 -
0 20 40 60 80 100

Que peut-on conjecturer ?

n+1
» A la maison : montrer que, pour tout n € N*, E(X,,) = ; .

E2A

IV. Exemples d’approximation d’une probabilité

IV.1. Un cas d’école pour illustrer la méthode

On considére un dé a 6 faces et on souhaite savoir si le dé est truqué ou non. Nous allons proposer un
protocole d’expérience qui nous permette de répondre & cette question.

Notons, pour tout i € [1,6], p; la probabilité que le dé tombe sur la face numéro ¢ lorsqu’on le lance
une fois. Le dé est équilibré si et seulement si, pour tout i € [1,6], p; = %. Il s’agit donc de proposer un
protocole qui permette de calculer une approximation de p;. Si toutes les approximations sont proches
de %, on pourra conclure que le dé est équilibré, sinon on pourra conclure qu’il est truqué.

Nous allons calculer une approximation de pg et le protocole sera analogue pour les autres valeurs.
On lance une infinité de fois le dé. Pour tout k& € N*, on note Ay I’événement : « le dé tombe sur 6 lors

du k®™€ lancer » et on pose
Zy =14,

Autrement dit,
7 {1 si le dé tombe sur 6 lors du £°™€ lancer
k p—

0 sinon

Les v.a.r. Z :
x sont indépendantes
x sont de méme loi (elles suivent toutes la loi B (pg))

x admettent toutes une espérance (qui est pg) et une variance (qui est pg(1 — pg))

>¢]) o0

On fixe maintenant N € N un entier trés grand (par exemple N = 10°) et on choisit comme ap-
proximation de pg la valeur prise par la variable Zy au terme des N premiers lancers. On obtient
alors

D’aprés la loi faible des grands nombres, pour tout € > 0 :

1+ + Zy
n

lim B([|Zn—ps|>e])= lim P<[— s

n—-+o0o n——+oo

nombre de 6 obtenus en N tirages
Pe =
N
~ fréquence d’apparition observée de la face 6 en N tirages

Le protocole consiste donc & lancer un nombre important de fois le dé et & compter la fréquence
d’apparition du chiffre 6. Cette fréquence est une bonne approximation de la probabilité que le dé
tombe sur 6 d’aprés la loi faible des grands nombres.

Ce résultat est cohérent avec notre intuition concernant le sens & donner au nombre P(A) pour A un
événement : si I'on répéte un grand nombre de fois 'expérience, I’événement A sera parfois réalisé,
parfois pas réalisé, mais la fréquence empirique a laquelle il se réalise est proche de P(A).

Traduction informatique : Supposons que 'on ait une fonction Python simulX () qui simule le résultat
d’un lancer de notre dé. Alors les fonctions :

1 def Approxp6(N): 1 def Approxp6bis(N):

2 S=0 2 F=0

3 for k in range(N): 3 for k in range(N):

4 if simulX() == 6: 4 if simulX() == 6:
5 S=8S+1 5 F=F+ 1/N
6 return S / N 6 return F

renvoient une approximation de pg lorsque N est choisi suffisamment grand.

E2A

IV.2. Rang du premier double Pile

On lance une infinité de fois une piéce équilibrée. On note X la variable aléatoire égale au rang du
premier double Pile, c’est-a-dire que X prend la valeur n si on obtient, pour la premiére fois, deux
Pile consécutifs aux rangs n et n — 1.

» Donner X ().

» Compléter la fonction suivante pour qu’elle simule X.

1 def simuX():

2 n = 1 # numéro du lancer

3 resultat = rd.binomial(1,1/2) # Pile est encodé par 1
4 while True:

5 if resultat == 0:

6 n = n+l

7 resultat = rd.binomial(1,1/2)
8 else:

9 n = n+l

10 resultat = rd.binomial(1,1/2)
11 if :

12 return n

» Que calcule la fonction suivante ?

def mystere(N):
S=0
for k in range(N):
if simuX() <= 5:
S=8+1
return S / N

jov s e o =

1=

» Que calcule la fonction suivante ?

def mystere2(N):
F=20
for k in range(N):
if simuX() !'= 3:
F=F+ 1/N
return F

jov s e o =

o

E2A

IV.3. Deux boules noires d’affilée

On fixe un entier naturel non nul n. On considére une urne contenant initialement 1 boule noire et 1
boule blanche. On effectue une série de n tirages successifs et avec remise dans cette urne. A chaque
tirage, aprés avoir remis dans 'urne la boule tirée, on lance une piéce équilibrée. Si cette piéce tombe
sur Pile, on rajoute une boule noire, sinon on rajoute une boule blanche. On note :

A, : « On tire deux boules noires consécutives au cours de I’expérience »

» Compléter la fonction Python suivante pour qu’elle simule I'expérience décrite et renvoie True si
I’événement A, est réalisé, et False sinon.

1 def simuA(n):

B=___ # Nombre de boules blanches
N = # Nombre de boules noires
booleen = False

for k in range(n):

N

I~ e

Jon

6 if # Si on tire une boule noire
7 if booleen == True: # Si on avait déja tiré une boule noire
8 return

9 else:

10 booleen =

—
-

else: # Si on tire une boule blanche

12 booleen =
13 if

14 B = B+1
15 else:

16 N = N+1
17 return

» Compléter la fonction Python suivante pour qu’elle renvoie une approximation de P(A,;,).

def approxProbA(n):
S=0
for k in range(10%**5):
if

=

lwo

BN

S +=1

Jon

return

[

» On considére un second protocole, ou I'on procéde cette fois-ci & une suite de tirages sans remise.
On trace les 50 premiers termes de la suite (P(4,))nen+ pour chacun des deux protocoles. Que
remarque-t-on ?

1.0 R XA R
AR S °
°° Ch
0.8 1 &t
0.6 1 +
0.4 1 s
.

0.2 1
0.0 1+

0 5 10 15 20 25 30

	Loi faible des grands nombres
	Structure classique de la partie informatique aux concours
	Exemples d'approximation d'une espérance
	Un exemple simple et vérifiable
	Un autre exemple vérifiable mais où le calcul est moins simple

	Exemples d'approximation d'une probabilité
	Un cas d'école pour illustrer la méthode
	Rang du premier double Pile
	Deux boules noires d'affilée

