
E2A

TP11 : Loi faible des grands nombres
et méthode de Monte Carlo

Commencer par importer les bibliothèques suivantes dans chaque fichier Python utilisé :
import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt

I. Loi faible des grands nombres

Théorème 1 (Loi faible des grands nombres).
Soit (Xk)k∈N∗ une suite de variables aléatoires.
On suppose que les v.a.r. Xk :
× sont indépendantes,
× admettent toutes la même espérance m,
× admettent toutes la même variance σ2.

On pose, pour tout n ∈ N∗, Xn =
1

n

n∑
k=1

Xk (moyenne empirique). On a alors,

∀ε > 0, lim
n→+∞

P
([∣∣Xn −m

∣∣ > ε
])

= 0

Remarque
• Il est fréquent de considérer (notamment pour les simulations informatiques) une suite (Xk)k∈N∗ de
v.a.r. :
× indépendantes,
× de même loi,
× admettant une espérance et une variance.
Ces hypothèses sont plus strictes que celles énoncés par la LfGN.
On peut donc bien évidemment utiliser la LfGN dans ce cadre.

• La loi faible des grands nombres se comprend de la manière suivante : lorsque n est grand, il est peu
probable que Xn prenne une valeur éloignée de m. Autrement dit, lorsque n est grand, il est très
probable que Xn prenne une valeur proche de m.
A retenir :

Une simulation de Xn pour n grand donne une approximation de m = E(X1)

• Ce résultat est plus général qu’il n’y parait, car tout calcul de probabilité peut s’interpréter comme
le calcul de l’espérance d’une variable aléatoire bien choisie. En effet, si A est un événement, alors
la variable aléatoire X = 1A suit une loi de Bernoulli de paramètre p = P(A) et donc E(X) = P(A).
Cette remarque est très importante et est au centre de beaucoup de questions d’informatique aux
concours.

• On appelle méthode de Monte Carlo toute méthode de calcul approché basée sur la loi faible des
grands nombres.

1

E2A

II. Structure classique de la partie informatique aux concours

Dans les énoncés de concours, la LfGN apparaît souvent dans les questions d’informatique. Considérons
un énoncé consistant à étudier une v.a.r. X qui admet une variance. On trouvera fréquemment les
questions suivantes.

1. Écrire une fonction / compléter une fonction / expliquer ce que fait une fonction d’en-tête def
simuX(): permettant de simuler la v.a.r. X. Cette fonction peut éventuellement prendre des para-
mètres d’entrée. Généralement, cette simulation peut être obtenue :

× en écrivant une fonction permettant de simuler l’expérience aléatoire considérée. La valeur si-
mulée de X est calculée lors de cette expérience (cas classique lorsqu’on travaille avec des v.a.r.
discrètes).

× ou bien parce que X s’écrit à l’aide d’autres v.a.r. qu’on peut facilement simuler (X est une
transformée de v.a.r. qui suivent des lois usuelles par exemple).

2. Écrire un programme / compléter un programme / expliquer ce que fait un programme permettant
d’obtenir une valeur approchée de l’espérance de la v.a.r. X.

Démonstration.

• L’idée naturelle est la suivante :

× on simule un grand nombre N de fois la v.a.r. X.
(généralement, on prend N = 104 ou 105 ou 106)

× on détermine la moyenne arithmétique des résultats obtenus (i.e. la réalisation de la moyenne
empirique Xn).

1 def approxEsp(N):
2 S = 0
3 for i in range(N):
4 S = S + simuX()
5 return S / N

Autre possibilité : on peut créer un tableau/une liste contenant les N simulations de la v.a.r. X
puis déterminer la moyenne arithmétique de ces observations à l’aide des opérations prédéfinies
en Python.

1 def approxEsp(N):
2 L = []
3 for i in range(N):
4 L.append(simuX())
5 return np.mean(L)

• Mathématiquement parlant, cela consiste à considérer un N -échantillon (X1, . . . , XN) de la v.a.r.
X. Autrement dit, les v.a.r. X1, . . . , XN sont :

× indépendantes,

× de même loi que X.

Comme X admet une variance, on se trouve dans un cadre (plus strict) permettant d’appliquer
la LfGN. Simuler ce N -échantillon, c’est en obtenir un N -uplet d’observations (x1, . . . , xN) (c’est
ce que contient la liste L dans le programme précédent). La LfGN permet d’affirmer que :

1

N

N∑
i=1

xi ' E(X)

2

E2A

III. Exemples d’approximation d’une espérance

III.1. Un exemple simple et vérifiable

Soit X la v.a.r. dont la loi est donnée par :

• X(Ω) = {0, 1, 2}

• P([X = 0]) =
7

12
, P([X = 1]) =

1

6
, P([X = 2]) =

1

4

I Vérifier que cela définit bien une loi de probabilité.

P([X = 0]) + P([X = 1]) + P([X = 2]) =
7

12
+

1

6
+

1

4
=

7 + 2 + 3

12
= 1

I Calculer E(X).

E(X) = 0× 7

12
+ 1× 1

6
+ 2× 1

4
=

4

6
=

2

3

I Compléter la fonction suivante pour qu’elle renvoie une simulation de la v.a.r. X.

1 def simuX():
2 r =
3 if :
4 return 0
5 elif :
6 return 1
7 else:
8 return 2

I Expliquer ce que renvoie le programme suivant et le tester plusieurs fois avec N = 104 puis avec
N = 105 et enfin avec N = 106.

1 def mystere(N):
2 L = []
3 for k in range(N):
4 L.append(simuX())
5 return np.mean(L)

Ce programme calcule une approximation de l’espérance de X. En effet, il renvoie une
simulation de la moyenne empirique XN et, d’après la loi faible des grands nombres, cette
simulation est proche de E(X) (plus N est grand et plus on a de chances que ce soit vrai).
On vérifie avec N = 1000 et en appelant plusieurs fois la fonction, la console Python
affiche des valeurs qui sont effectivement proches de 0.66 (entre 0.6 et 0.75).
Si l’on choisit N = 10000, les valeurs obtenues semblent encore plus proches de 0.66.

3

E2A

III.2. Un autre exemple vérifiable mais où le calcul est moins simple

Soit n ∈ N∗. On considère une urne contenant n boules, numérotées de 1 à n. On effectue un unique
tirage dans cette urne et on note le numéro de la boule obtenue. Si k désigne le numéro de la boule tirée,
alors on retire de l’urne toutes les boules portant un numéro strictement supérieur à k. On effectue
ensuite une seconde série de tirages successifs et avec remise dans l’urne, jusqu’à-ce qu’on obtienne la
boule numéro 1. On note Xn la variable aléatoire égale au nombre de tirages effectués lors de cette
seconde série de tirages.

I Compléter la fonction Python suivante pour qu’elle renvoie une simulation de la v.a.r. Xn.

1 def simuX(n):
2 k =
3 return

I Compléter la fonction Python suivante pour qu’elle renvoie une approximation de E(Xn).

1 def approxEsp(N, n):
2 E = np.zeros(N)
3 for i in range(N):
4 E[i] = simuX(n)
5 return

I Le programme Python

1 N = 10**5
2 abscisse = [n for n in range(1,100)]
3 ordonnee = [approxEsp(N, n) for n in abscisse]
4 plt.plot(abscisse, ordonnee, ’.’)

renvoie

0 20 40 60 80 100
0

10

20

30

40

50

Que peut-on conjecturer ?

On peut conjecturer que E(Xn) ∼
n→+∞

n
2 .

I A la maison : montrer que, pour tout n ∈ N∗, E(Xn) =
n+ 1

2
.

4

E2A

IV. Exemples d’approximation d’une probabilité

IV.1. Un cas d’école pour illustrer la méthode

On considère un dé à 6 faces et on souhaite savoir si le dé est truqué ou non. Nous allons proposer un
protocole d’expérience qui nous permette de répondre à cette question.
Notons, pour tout i ∈ J1, 6K, pi la probabilité que le dé tombe sur la face numéro i lorsqu’on le lance
une fois. Le dé est équilibré si et seulement si, pour tout i ∈ J1, 6K, pi = 1

6 . Il s’agit donc de proposer un
protocole qui permette de calculer une approximation de pi. Si toutes les approximations sont proches
de 1

6 , on pourra conclure que le dé est équilibré, sinon on pourra conclure qu’il est truqué.
Nous allons calculer une approximation de p6 et le protocole sera analogue pour les autres valeurs.
On lance une infinité de fois le dé. Pour tout k ∈ N∗, on note Ak l’événement : « le dé tombe sur 6 lors
du kème lancer » et on pose

Zk = 1Ak

Autrement dit,

Zk =

{
1 si le dé tombe sur 6 lors du kème lancer
0 sinon

Les v.a.r. Zk :
× sont indépendantes
× sont de même loi (elles suivent toutes la loi B (p6))
× admettent toutes une espérance (qui est p6) et une variance (qui est p6(1− p6))
D’après la loi faible des grands nombres, pour tout ε > 0 :

lim
n→+∞

P
([∣∣Zn − p6

∣∣ > ε
])

= lim
n→+∞

P
([∣∣∣∣Z1 + · · ·+ Zn

n
− p6

∣∣∣∣ > ε

])
= 0

On fixe maintenant N ∈ N un entier très grand (par exemple N = 106) et on choisit comme ap-
proximation de p6 la valeur prise par la variable ZN au terme des N premiers lancers. On obtient
alors

p6 '
nombre de 6 obtenus en N tirages

N
' fréquence d’apparition observée de la face 6 en N tirages

Le protocole consiste donc à lancer un nombre important de fois le dé et à compter la fréquence
d’apparition du chiffre 6. Cette fréquence est une bonne approximation de la probabilité que le dé
tombe sur 6 d’après la loi faible des grands nombres.
Ce résultat est cohérent avec notre intuition concernant le sens à donner au nombre P(A) pour A un
événement : si l’on répète un grand nombre de fois l’expérience, l’événement A sera parfois réalisé,
parfois pas réalisé, mais la fréquence empirique à laquelle il se réalise est proche de P(A).

Traduction informatique : Supposons que l’on ait une fonction Python simulX() qui simule le résultat
d’un lancer de notre dé. Alors les fonctions :

1 def Approxp6(N):
2 S = 0
3 for k in range(N):
4 if simulX() == 6:
5 S = S + 1
6 return S / N

1 def Approxp6bis(N):
2 F = 0
3 for k in range(N):
4 if simulX() == 6:
5 F = F + 1/N
6 return F

renvoient une approximation de p6 lorsque N est choisi suffisamment grand.

5

E2A

IV.2. Rang du premier double Pile

On lance une infinité de fois une pièce équilibrée. On note X la variable aléatoire égale au rang du
premier double Pile, c’est-à-dire que X prend la valeur n si on obtient, pour la première fois, deux
Pile consécutifs aux rangs n et n− 1.

I Donner X(Ω).

X(Ω) = J2,+∞J

I Compléter la fonction suivante pour qu’elle simule X.

1 def simuX():
2 n = 1 # numéro du lancer
3 resultat = rd.binomial(1,1/2) # Pile est encodé par 1
4 while True:
5 if resultat == 0:
6 n = n+1
7 resultat = rd.binomial(1,1/2)
8 else:
9 n = n+1
10 resultat = rd.binomial(1,1/2)
11 if :
12 return n

I Que calcule la fonction suivante ?

1 def mystere(N):
2 S = 0
3 for k in range(N):
4 if simuX() <= 5:
5 S = S + 1
6 return S / N

Sous réserve que X admette une variance, pour un N choisi suffisamment grand, la
fonction précédente calcule une approximation de la probabilité P([X 6 5]). On trouve
P([X 6 5]) ' 0, 59.

I Que calcule la fonction suivante ?

1 def mystere2(N):
2 F = 0
3 for k in range(N):
4 if simuX() != 3:
5 F = F + 1/N
6 return F

Sous réserve que X admette une variance, pour un N choisi suffisamment grand, la
fonction précédente calcule une approximation de la probabilité P([X 6= 3]). On trouve
P([X 6= 3]) ' 0, 59.

6

E2A

IV.3. Deux boules noires d’affilée

On fixe un entier naturel non nul n. On considère une urne contenant initialement 1 boule noire et 1
boule blanche. On effectue une série de n tirages successifs et avec remise dans cette urne. A chaque
tirage, après avoir remis dans l’urne la boule tirée, on lance une pièce équilibrée. Si cette pièce tombe
sur Pile, on rajoute une boule noire, sinon on rajoute une boule blanche. On note :

An : « On tire deux boules noires consécutives au cours de l’expérience »

I Compléter la fonction Python suivante pour qu’elle simule l’expérience décrite et renvoie True si
l’événement An est réalisé, et False sinon.

1 def simuA(n):
2 B = # Nombre de boules blanches
3 N = # Nombre de boules noires
4 booleen = False
5 for k in range(n):
6 if # Si on tire une boule noire
7 if booleen == True: # Si on avait déjà tiré une boule noire
8 return
9 else:
10 booleen =
11 else: # Si on tire une boule blanche
12 booleen =
13 if
14 B = B+1
15 else:
16 N = N+1
17 return

I Compléter la fonction Python suivante pour qu’elle renvoie une approximation de P(An).

1 def approxProbA(n):
2 S = 0
3 for k in range(10**5):
4 if
5 S += 1
6 return

I On considère un second protocole, où l’on procède cette fois-ci à une suite de tirages sans remise.
On trace les 50 premiers termes de la suite (P(An))n∈N∗ pour chacun des deux protocoles. Que
remarque-t-on ?

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

7

	Loi faible des grands nombres
	Structure classique de la partie informatique aux concours
	Exemples d'approximation d'une espérance
	Un exemple simple et vérifiable
	Un autre exemple vérifiable mais où le calcul est moins simple

	Exemples d'approximation d'une probabilité
	Un cas d'école pour illustrer la méthode
	Rang du premier double Pile
	Deux boules noires d'affilée

